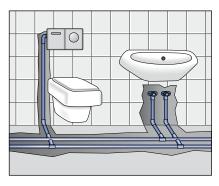


Содержание

l.	Использование системы Ekoplastik PPR	3	X.	Инструкция по монтажу	12 – 22
				1. Общие сведения	12
II.	Гарантия	3		2. Линейное расширение и сжатие	13
				Примеры расчетов компенсаций	14
III.	Основная информация об ассортименте	3		Графики для определения линейного	
				изменения трубопровода и длины	
IV.	Свойства системы Ekoplastik PPR	4		компенсатора	15 – 16
	1. Преимущества	4		3. Расстояние между опорами трубопровода	17
	2. Маркировка изделий Системы Ekoplastik PPR	4		4. Крепление трубопровода	18
	3. Материал для производства труб и фитингов			5. Прокладка трубопровода	18 – 20
	системы Ekoplastik PPR	4		6. Соединение в систему	21
	4. Нормативные документы по производству			7. Изоляция	21 – 22
	и контролю качества изделий	4		8. Испытание давлением	22
		4			
			XI.	Складирование и транспортировка	22
V.	Условия эксплуатации трубопроводной системы				
	Ekoplastik PPR во внутренних сетях	5	XII.	Протокол испытания давлением	23
	1. Внутренние водопроводные сети.	5			
	2. Внутренние сети отопления	5	XIII.	Полифузная сварка	24 – 26
	2. Dily iperinine ectivi of officerium	,	Aiii.	1. Необходимые инструменты	24
VI.	Расчет рабочих параметров трубопроводной сист	- ОМЫ		2. Подготовка инструмента	24
V 1.	Ekoplastik PPR для водопроводных сетей	5		 Подготовка инструмента Подготовка материала 	24
	екоріазтік егіс для водопроводных сетей	,		4. Процесс сварки	24 – 26
VII.	Paguat nafauus ganauatnan tnyfagnanaguay gust			4. Процесс сварки	24 - 20
VII.	Расчет рабочих параметров трубопроводной сист	емы 5 – 7	VIV	2	26
	Ekoplastik PPR для сетей отопления	5-7	XIV.	Электромуфтовая сварка	26
	1. Общие задачи для расчета системы	-		1. Необходимые инструменты	26
	отопления	5		2. Подготовка инструмента	26
	2. Определение срока эксплуатации труб в	,		3. Процесс сварки	26
	системах отопления	6	V/V	B	
	3. Пример определения срока эксплуатации		XV.	Ремонтный комплект для просверленного	27
	трубопровода в отопительной сети	6		трубопровода	27
	4. Корректировка расчетного срока эксплуатации			_	
	труб из PPR	6	XVI.	Вварные седла	28
	5. Специфика напольного отопления	6 – 7			
			XVII.	Таблицы потерь давления	29 – 35
VIII.	Условия прокладки трубопровода			(для гидравлического расчета	
	Ekoplastik PPR	7		трубопроводов из PPR)	
IX.	Таблицы и графики	8 – 11	XVIII.	Значения коэффициента местных сопротивлени	ий ζ
	1. Эксплуатационные параметры			для фасонных частей системы Ekoplastik PPR	35
	трубопровода из PPR для водоснабжения	8			
	2. Эксплуатационные параметры	-	XIX.	Заключительное положение	35
	трубопровода из PPR для отопления	9			
	3. Эксплуатационные параметры трубопроводов				
	из PPR согласно EN ISO 15874	10			
	4. Изотермы прочности	11			

Система Ekoplastik PPR выпускается в сером и зеленом цветовом исполнении.

Система Ekoplastik PPR



I. Использование системы Ekoplastik PPR

Трубопроводную систему Ekoplastik PPR можно использовать как распределительный механизм для подачи воды в жилых домах и административных зданиях, учреждениях культуры, медицинских учреждениях, в высших и средних учебных заведениях, в дошкольных учреждениях, в промышленности и в сельском хозяйстве.

Система Ekoplastik PPR предназначена для подачи питьевой и горячей воды, для систем местного и центрального отопления, для систем напольного и потолочного отопления, для подачи воздуха и кондиционирования.

Трубопроводную систему Ekoplastik PPR можно использовать для

транспортировки жидких, газообразных и сыпучих материалов. Возможность использования труб Ekoplastik PPR для указанных сред определяется в каждом конкретном случае, в зависимости от химической стойкости материала трубы к транспортируемой среде.

II. Гарантия

На стандартные изделия системы Ekoplastik PPR дается гарантия сроком на 10 лет. Условием гарантии является правильное применение изделия при соблюдении предписаний настоящей инструкции по монтажу. На остальные изделия предоставляется гарантия сроком на 24 месяца. Стандартные изделия для трубопроводных сетей питьевой (холодной) и горячей воды представлены в каталоге отдельно от нестандартных изделий предназначенных для использования только в трубопроводных сетях питьевой (холодной) воды.

III. Основная информация об ассортименте

Система Ekoplastik PPR предусматривает следующие типоразмеры труб и фитингов (приводится наружный диаметр труб): 16, 20, 25, 32, 40, 50, 63, 75, 90 и 110 мм.

В рамках системы Ekoplastik PPR производятся трубы четырех типов (с разной толщиной стенки) для возможности использования в разных эксплуатационных условиях (в зависимости от комбинации эксплуатационного давления и температуры):

- S 5 (PN 10) для холодной воды и напольного отопления
- S 3,2 (PN 16) для холодной воды, горячей воды и напольного отопления
- \$ 2,5 (PN 20) для горячей воды и центрального отопления (при соблюдении предписаний настоящей инструкции по монтажу).
- Stabi S 3,2 (PN 20 tested) для горячей воды и центрального отопления (при соблюдении предписаний настоящей инструкции по монтажу).

Трубы STABI имеют трёхслойную структуру: в процессе производства внутренняя полипропиленовая труба технологически соединена с алюминиевой фольгой и покрыта внешним слоем полипропилена. Благодаря алюминиевому слою, труба не только приобретает стойкость к воздействию высоких температур и давления, но и получает характеристики, свойственные металлическим трубам – большую жесткость и меньшее тепловое расширение.

Для защиты алюминиевого слоя от механических повреждений труба покрыта тонким внешним слоем полипропилена. В единичных случаях, в результате влияния остаточной влаги, образующейся на внутренней трубе в процессе производства, могут появляться небольшие вздутия и пузыри на поверхности внешнего слоя. Поскольку внешний слой не влияет на механические свойства трубы, то речь идет всего лишь о недостатках эстетического характера.

Фитинги производятся одного напорного ряда PN 20 (максимального класса давления) и в зависимости от назначения подразделяются на:

- цельнопластиковые фитинги (муфты, угольники, тройники, заглушки, крестовины и пр.)
- комбинированные фитинги (пластик + латунь) для соединения с металлическими элементами трубопровода (муфты с внутренней или наружной резьбой, угольники с внутренней или наружной резьбой, муфты с накидными гайками, настенные угольники, универсальный настенный комплект и пр.)
- фитинги для фланцевых соединений
- прямоточные пластиковые краны (вентили) с латунным конусом (классические и под штукатурку)
- шаровые пластиковые краны с шаром из хромированной латуни (классические и под штукатурку)
- специальные детали (перекрещивания, компенсационные петли и пр.)

дополнительные детали

- инструмент (сварочные аппараты, режущие инструменты, ножницы, обрезные приспособления, термометры и прочее)
- опоры, хомуты, металлические желоба, пластиковые желоба и пробки

Подробный список фитингов и деталей приведен в каталоге изделий.

IV. Свойства системы Ekoplastik PPR

1. Преимущества

- Отсутствие коррозии.
- Отсутствие заиления.
- Гигиеническая безвредность.
- Экологически безвредное изделие (возможность вторичной переработки или безвредного сжигания).
- Низкие потери давления по длине (на трение).
- Химическая стойкость.
- Плохой электропроводник.
- Гибкость.
- Низкая масса.
- Легкий, быстрый и чистый монтаж.
- Бесшумность.
- При условии правильного применения, срок эксплуатации –
 50 и более лет.

2. Маркировка изделий системы Ekoplastik PPR

Маркировка осуществляется следующим образом:

Трубы: Название WAVIN Ekoplastik, материал PPR-80, размер (наружный диаметр и толщина стенки); стандарт для производства EN ISO 15874 и спецификация применения согласно данному стандарту S (PN); дата производства и идентификационная отметка производственной линии (номер экструдера).

Фитинги: Название Ekoplastik (в некоторых случаях приводится только сокращение ЕК или ЕКО), размер и материал. В упаковках фитингов имеется бумажная этикетка, на которой кроме наименования детали приводится дата упаковки и идентификационная отметка контролера, производившего качественную оценку изделия.

На основании требований EN ISO 15874, которые применяются при производстве труб, серии труб присвоено условное обозначение "S". Соответствие обозначения "PN", применяемого ранее, и "S" указано в таблише:

S	5	3,2	2,5
PN	10	16	20

Возможность идентификации каждой детали является важным инструментом при контроле качества и в случае рекламации товара.

3. Материал для производства труб и фитингов системы Ekoplastik PPR

Для производства труб и фитингов Системы Ekoplastik PPR используется статистический сополимер полипропилена (полипропилен 3 типа) – Рандом сополимер (принятые условные обозначения – PP-3, PPR-3, PPR, PPRC), обрабатывающийся методами инжекционного прессования и экструзии, обладающий отменной свариваемостью.

Основные характеристики PPR

Свойства	Условия испытаний	Единица измерения	Значение показателя
Удельная масса		г/см ³	0,9
Предел текучести при растяжении		МПа	25 – 26
Удлинение при пределе текучести		%	10 – 15
Модуль упругости Е при изгибе		Н/мм²	850 – 900
Удельная ударная вязкость по Шарпи	23 °C 0 °C	кДж/м² кДж/м²	22 ± 3 4 – 4,5
Коэффициент линейного теплового расширения		мм/м °С	0,12
Коэффициент теплопроводности		Ват/м °C	0,24

4. Нормативные документы по производству и контролю качества изделий

Изделия системы Ekoplastik PPR производятся в соответствии с производственным стандартом PN 01 (аналог технических условий на производство), нормами DIN 8077, DIN 8078, DIN 16962, DIN 4726, и требованиями европейской нормы EN ISO 15874. В производственный стандарт PN 01 постепенно вводятся требования из системы европейских норм EN.

Для обеспечения качества изделий в соответствии с ISO 9001 производится регулярный контроль производства, с использованием научно обоснованных методик.

Контролируются:

- характеристики исходного сырья
- параметры изделий на отдельных стадиях производства
- производственное оборудование
- параметры измерительных приборов

5. Сертификация:

Белоруссия, Болгария, Венгрия, Германия, Испания, Италия, Польша, Россия, Румыния, Словакия, Словения, Украина, Хорватия, Чехия и Япония (состояние к началу 2009-го года).

V. Условия эксплуатации трубопроводной системы Ekoplastik PPR во внутренних сетях.

1. Внутренние водопроводные сети.

Для внутренних водопроводных сетей типовыми являются следующие эксплуатационные параметры:

Среда	Максимальное эксплуатационное давление [бар]	Максимальная эксплуатационная температура [°C]
Холодная вода	0 – 10	до 20 °C *
Горячая вода	0 – 10	до 60 °C **

^{*} Согласно санитарно-гигиеническим требованиям температура питьевой воды не должна превышать 20 °C.

Систему Ekoplastik PPR можно использовать для всех трубопроводов внутреннего водоснабжения (холодной питьевой воды, холодной воды для хозяйственных целей, горячей воды, циркуляционных линий). Предполагаемый срок эксплуатации полипропиленовой трубопроводной системы 50 лет при условии правильного выбора материала, правильном применении выбранного материала и правильном монтаже системы. Материал выбирается проектировщиком в зависимости от эксплуатационных параметров системы (давление-температура), а также способов нагрева воды и системы терморегулирования (точностьнадежность).

2. Внутренние сети отопления

При определении целесообразности использования системы Ekoplastik PPR во внутренних сетях отопления проектировщику необходимо принимать во внимание максимальную расчетную температуру входящей воды, зависящую от температурных характеристик отопительных приборов, технических возможностей источников тепла, типа расширительного сосуда (экспансомата) и способа подпитки системы.

Рекомендуемые значения для отопления									
Интервалы температур									
70 / 50 °C	70 / 50 °C 70 / 60 °C 75 / 65 °C 80 / 60 °C								
Для низкотемпературных систем									

VI. Расчет рабочих параметров трубопроводной системы Ekoplastik PPR для водопроводных сетей

Под параметрами эксплуатации подразумевается зависимость между давлением и температурой, обеспечивающая нормальное функционирование трубопровода в течение всего срока эксплуатации.

Допустимые параметры эксплуатации приведены в таблице на стр.: 8. В этой же таблице отмечено (выделено другим цветом) рекомендованное применение труб того или иного напорного ряда для сетей холодного и горячего водоснабжения. При составлении данной таблицы производился расчет с использованием коэффициента безопасности равном 1,5.

Примечание: Из таблицы видно, что при одинаковой температуре трубы большего напорного ряда выдерживают большее эксплуатационное давление. При рассмотрении одного напорного ряда заметно, что с увеличением температуры понижается эксплуатационное давление. Фитинги системы Ekoplastik PPR соответствуют серии S 2,5 (PN 20).

При использовании полипропиленовых труб в сетях централизованного горячего водоснабжения убедитесь, что сеть имеет качественную технологию нагрева воды и оборудование гарантирующее стабильную температуру воды в сети, которая не будет превышать максимально допустимую расчетную температуру.

VII. Расчет рабочих параметров трубопроводной системы Ekoplastik PPR для сетей отопления

1. Общие задачи для расчета системы отопления

Трубы Ekoplastik PPR S 2,5 (PN20) и Ekoplastik Stabi предназначены для систем центрального отопления с температурой воды до 80 °C и давлением до 0,39 МПа. Компания WAVIN Ekoplastik s.r.о выпускает трубы и фитинги Ekoplastik Therm, разработанные специально для использования в системах отопления с температурой теплоносителя до 90 °C. Существует отдельный каталог и инструкция по применению для изделий системы Ekoplastik Therm.

Выбор материала трубопровода является решающим при проектировании системы отопления. При составлении данной таблицы производился расчет с использованием коэффициента безопасности равном 2,5. Для расчета системы отопления из полипропиленовых труб применяются те же методы, что и для расчета систем из металлических труб. Полипропиленовые трубы пригодны для открытой и закрытой прокладки. На стадии проектирования необходимо составить принципиальные схемы прокладки труб, в зависимости от типа выбранной системы (однотрубная, двухтрубная, коллекторная, комбинированная и пр.). Необходимо выбрать способы защиты труб от механических и иных повреждений, способы изоляции труб, способы компенсации линейного расширения и прочее. В итоге получится качественная, надежная и долговечная система, которая не портит эстетический вид помещений.

При монтаже за котлом или бойлером пластмассового трубопровода рекомендуем, в целях предотвращения перегрева системы, установить 1,5-2 м металлического трубопровода.

Необходимо рассчитать срок эксплуатации проектируемой системы, для чего необходимы следующие данные:

- максимальная температура воды [°C]
- максимальное эксплуатационное давление [МПа]
- наружный диаметр используемой трубы [мм]
- толщина стенки используемой трубы [мм]
- коэффициент безопасности (для отопления)
- продолжительность отопительного сезона в году [месяцы]

^{**} В системах горячего водоснабжения, в целях предотвращения ошпаривания (ожога), предусматривается температура воды не выше 57 °C (в месте водоразбора). Однако следует отметить, что в системах горячего водоснабжения предусматривается периодический кратковременный нагрев воды до более высокой температуры (70 °C) по гигиеническим причинам: для ликвидации патогенных микробактерий и в частности бактерии Legionella pneumophila (легионелла пневмофила).

2. Определение срока эксплуатации труб в системах отопления

Для определения срока эксплуатации необходимо установить расчетное напряжение в стенке трубы, определенное по максимальному эксплуатационному давлению по формуле:

$$\sigma v = \frac{p \cdot (D - s)}{2 \cdot s} \cdot k$$

Обозначение	Величина
σν D s p k	Расчетное напряжение [МПа] Наружный диаметр трубы [мм] Толщина стенки [мм] Максимальное давление [МПа] Коэффициент безопасности [для отопления 2,5]

Для справки:

1МПа = 10 бар

Величину полученного в результате расчета значения напряжения откладываем на вертикальной оси графика на стр. 11. Определим точку пересечения показателя расчетного напряжения (горизонтальная линия) с изотермой температуры воды (наклонная линия). Из точки пересечения вертикально вниз опустим перпендикуляр на горизонтальную ось, на которой обозначено время в часах (на меньшей шкале в годах). Значение в точке пересечения перпендикуляра и горизонтальной оси есть предполагаемый срок эксплуатации трубопровода при условии непрерывной работы системы отопления в течение года. Из отношения продолжительности календарного года (в месяцах) к продолжительности отопительного сезона (в месяцах) выведем коэффициент, на который умножим определенный показатель минимального срока эксплуатации при условии непрерывной работы системы отопления в течение года. Полученное в результате расчета значение является реально предполагаемым сроком эксплуатации труб в системе отопления, при условии соблюдения правил монтажа и эксплуатации.

3. Пример определения срока эксплуатации трубопровода в отопительной сети

Исходные данные

Показатель
S 2,5 (PN 20) (20 x 3,4mm)
80 °C
0,22 МПа
7 месяцев
2,5

$$σv = {0,22 \cdot (20 - 3,4) \over 2 \cdot 3,4}$$
 . 2,5 = 1,34 ΜΠα

Значение минимального срока эксплуатации при условии непрерывной работы системы отопления (рассчитано по графику на стр. 11 для изотермы, соответствующей заданной по условиям примера температуры воды $80\,^{\circ}$ C) равно 216 000 часов или 25 лет.

Предполагаемый срок эксплуатации по отношению к продолжительности отопительного сезона:

4. Корректировка расчетного срока эксплуатации труб из PPR

Если результат, полученный в результате расчета по определению срока эксплуатации труб в системе отопления, не соответствует требованиям, можно произвести следующее корректировки:

1/ снизить макс. эксплуатационное давление и заново произвести расчет системы отопления с новым значением эксплуатационного давления. В результате срок эксплуатации увеличится.

2/ снизить макс. эксплуатационную температуру воды и заново произвести расчет системы отопления с новым значением эксплуатационной температуры. В результате срок эксплуатации увеличится.

5. Специфика напольного отопления

Система напольного отопления (теплый пол) может применяться в жилищном и промышленном строительстве (жилые дома, спортивные залы, религиозно-культовые здания, цеха промышленных предприятий, склады, подогрев подъездных путей, открытых лестниц, автостоянок, взлетно-посадочных полос, рулежных дорожек, мостов, подземных переходов, спортивных площадок, стадионов и пр.).

При устройстве напольного водяного отопления необходимо соблюсти максимально допустимую температуру поверхности пола в помещениях, предназначенных для пребывания людей.

Помещение	Максимальная температура поверхности пола [°C]
Жилое	26
Ванная	30
пол (парапет)	
Вокруг бассейна	32

Для того чтобы сделать возможным перенос тепла из воды, находящейся в трубах, в массив пола и далее на поверхность пола, при проектировании сети напольного отопления выбирается низкая скорость потока воды в трубах (приблизительно 0,3 м/с).

Давление в трубопроводе определяется на основе эксплуатационных параметров отопительной системы. Температура воды в сети напольного отопления устанавливается на основе расчета в зависимости от типа помещения, конструкции пола и допустимой температуры поверхности пола. Обычно максимальная температура в сети напольного отопления не превышает 45 °C, а давление 0,3 МПа (3 бар). При этих параметрах, для сети напольного отопления, можно использовать трубы Ekoplastik

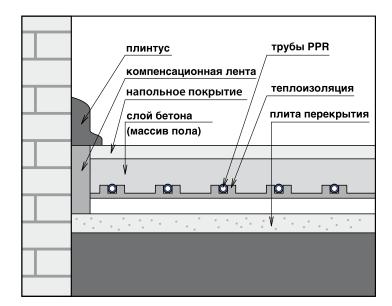
PPR S 5 (PN 10) или S 3,2 (PN 16). Для прокладки отопительных контуров сети напольного отопления используются трубы, выпускаемые в бухтах. Трубы в бухтах наиболее удобны, так как избавляют от необходимости использовать в конструкции пола лишние соединения. Отопительные трубы монтируются в конструкции пола по спирали (улиткой) либо петлями (противотоком), возможна и комбинированная система (петля + спираль).

Диаметр труб и шаг их укладки определяются расчетом. При проектировании сети напольного отопления необходимо определить способ регулировки теплоотдачи пола и соблюдения допустимой температуры поверхности пола. В местах, где имеется необходимость более высокой теплоотдачи пола (под окнами), отопительные трубы прокладываются ближе друг к другу. Под мебелью, трубы для отопления желательно не прокладывать. Максимальная длина отопительного змеевика для одного отопительного контура не должна превышать 100 м. В помещениях с несколькими отопительными контурами должны быть предусмотрены компенсационные швы, отделяющие массивы пола контуров друг от друга (включая наружный слой). Компенсационные швы необходимо заполнить эластичным материалом, который примет на себя тепловое расширение массивов пола. Конструкция теплого пола так же предусматривает устройство компенсационного шва вдоль стен помещения. Каждый отопительный контур начинается в распределительном коллекторе, а оканчивается в приемном коллекторе. Для удобства обслуживания системы напольного отопления коллекторы располагают в одном месте, установив их в распределительные шкафы или ниши. Там же необходимо установить устройство для автоматической деаэрации трубопровода. Таким устройством служит автовоздушный клапан, установленный в верхней точке подающего коллектора. Для экономичной эксплуатации системы напольного отопления выбирают напольное покрытие с минимальным тепловым сопротивлением (оптимальным покрытием является керамическая плитка). При устройстве пола необходимо соблюдать точное положение труб в контуре и расчетное межосевое расстояние. Трубы можно крепить на металлическую сетку или специальные профили, уложенные поверх теплоизоляции, и специальные профильные изоляционные маты. При монтаже необходимо руководствоваться теми же правилами, что и при монтаже труб для устройства водопровода. Минимальная температура при монтаже системы напольного отопления 15 °C. При монтаже пола моток трубы аккуратно разматывают, избегая крутильного

напряжения, и прикрепляют к основанию пола. Избегайте механических повреждений труб в местах крепления. Особое внимание уделяйте креплению труб к металлическим сеткам.

По окончании укладки трубопровода его необходимо заполнить водой (температура не ниже 25 °C и давлением в 1,5 раза превышающим рабочее). Когда трубопровод примет необходимую форму можно приступать к укладке следующих слоев пола. Для использования всех преимуществ теплого пола необходимо очень тщательно выполнить проект системы отопления, принимая во внимание тот факт, что в большинстве случаев напольное отопление является одной из частей отопительной системы объекта.

VIII. Условия прокладки трубопровода Ekoplastik PPR


Условия прокладки труб водопроводной и отопительной системы похожи (принимая во внимание специфические черты отопительных систем см. главу V, VII). Необходимо обеспечить механическую защиту трубопровода и учесть необходимость компенсации линейного расширения.

Трубы системы отопления рекомендуется прокладывать внутри строительной конструкции (стена, пол, потолок) или закрыть навесным покрытием. Присоединения приборов отопления, которые останутся открытыми, рекомендуется в эстетических целях осуществить металлическими соединениями, напр. хромированной трубкой.

В случае открытой прокладки труб необходимо учитывать, что на трубах STABI могут появиться небольшие вздутия и пузырьки. Данное явление ни в коем случае не влияет на функциональность и срок службы труб, и поэтому не является основанием для их замены.

Трубопровод можно прокладывать:

- в штробах
- в инсталляционных перегородках
- в полах, потолках, стенах
- вдоль стен (открыто или под покрытием)
- в инсталляционных шахтах и каналах
- возможность использования труб вне помещений необходимо оценивать в каждом конкретном случае

IX. Таблицы и графики

	период	период Серия труб (напорный ряд)					
температура	эксплуатации	S 5 (PN 10)	S 3,2 (PN 16)	S 2,5 (PN 20)	Stabi		
[°C]	(годы)	допустимое давление при эксплуатации (бар)					
	1	17,5	27,8	35,1	35,1		
	5	16,5	26,2	33,0	33,0		
10	10	16,1	25,6	32,2	32,2		
	25	15,6	24,7	31,1	31,1		
	50	15,2	24,1	30,3	30,3		
	1	15,0	23,7	29,9	29,9		
	5	14,1	22,3	28,1	28,1		
20	10	13,7	21,7	27,4	27,4		
	25	13,2	21,0	26,4	26,4		
	50	12,9	20,4	25,7	25,7		
	1	12,7	20,2	25,4	25,4		
	5	11,9	18,9	23,8	23,8		
30	10	11,6	18,4	23,2	23,2		
	25	11,2	17,7	22,3	22,3		
	50	10,9	17,2	21,7	21,7		
	1	10,8	17,1	21,6	21,6		
	5	10,1	16,0	20,2	20,2		
40	10	9,8	15,5	19,6	19,6		
	25	9,4	15,0	18,8	18,8		
	50	9,2	14,5	18,3	18,3		
	1	9,1	14,5	18,2	18,2		
	5	8,5	13,5	17,0	17,0		
50	10	8,2	13,1	16,5	16,5		
	25	7,9	12,6	15,9	15,9		
	50	7,7	12,2	15,4	15,4		
	1	7,7	12,2	15,4	15,4		
	5	7,1	11,3	14,3	14,3		
60	10	6,9	11,0	13,9	13,9		
	25	6,6	10,5	13,3	13,3		
	50	6,4	10,2	12,9	12,9		
	1	6,5	10,3	12,9	12,9		
	5	6,0	9,5	12,0	12,0		
70	10	5,8	9,2	11,6	11,6		
	25	5,0	8,0	10,0	10,0		
	50	4,2	6,7	8,5	8,5		
	1	5,4	8,6	10,8	10,8		
	5	4,8	7,6	9,6	9,6		
80	10	4,0	6,4	8,1	8,1		
	25	3,2	5,1	6,5	6,5		
	1	3,8	6,1	7,6	7,6		
95	5	2,6	4,1	5,2	5,2		
	холодна	я вода	горячая вода				

коэффициент безопасности 1,5

1. Эксплуатационные параметры трубопровода из PPR для водоснабжения (на основании DIN 8077/2007)− см. стр. 8

2. Эксплуатационные параметры трубопровода из PPR для отопления (на основании DIN 8077/2007)

Период эксплуатации в данной таблице указан с учетом непрерывной работы системы отопления в течении года (12 месяцев). Предполагаемый период эксплуатации, учитывающий реальную продолжительность работы системы отопления, определяется по формуле на стр. 6.

	период	Серия труб (напорный ряд)						
температура	эксплуатации	S 5 (PN 10)	S 3,2 (PN 16)	S 2,5 (PN 20)	Stabi			
[°C]	(годы)	допустимое давление при эксплуатации (бар)						
	1	7,6	12,1	15,2	15,2			
	5	7,1	11,3	14,3	14,3			
30	10	7,0	11,0	13,9	13,9			
	25	6,7	10,6	13,4	13,4			
	50	6,5	10,3	13,0	13,0			
	1	6,5	10,3	13,0	13,0			
	5	6,1	9,6	12,1	12,1			
40	10	5,9	9,3	11,8	11,8			
	25	5,6	9,0	11,3	11,3			
	50	5,5	8,7	11,0	11,0			
	1	5,5	8,7	10,9	10,9			
	5	5,1	8,1	10,2	10,2			
50	10	4,9	7,9	9,9	9,9			
	25	4,7	7,6	9,5	9,5			
	50	4,6	7,3	9,2	9,2			
	1			9,2	9,2			
	5			8,6	8,6			
60	10			8,3	8,3			
	25			8,0	8,0			
	50			7,7	7,7			
	1			7,7	7,7			
	5			7,2	7,2			
70	10			7,0	7,0			
	25			6,0	6,0			
	50			5,1	5,1			
	1			6,5	6,5			
00	5			5,8	5,8			
80	10			4,9	4,9			
	25			3,9	3,9			
OF	1			4,6	4,6			
95	5			3,1	3,1			
напольное отопление отопление								

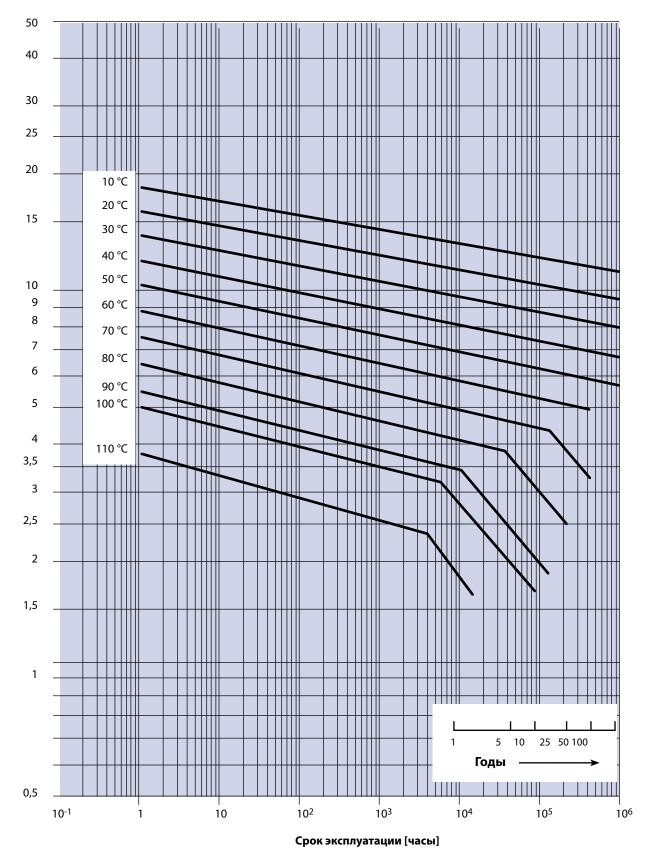
3. Эксплуатационные параметры трубопроводов из PPR согласно EN ISO 15874

Настоящий стандарт использует несколько иной способ определения эксплуатационных параметров, чем стандарт DIN 8077, основой, однако, являются те же изотермы прочности.

Нормы определяют четыре класса эксплуатации со сроком службы 50 лет. Срок службы трубопровода для каждого класса эксплуатации определяется суммарным временем работы трубопровода при температурах $T_D + T_{max} + T_{mal}$ и составляет **50 лет**.

Класс эксплуа- тации	Расчетная температура Т _D	Время при Т _D	Максимальная расчетная температура Т _{мах}	Время при Т _{тах}	Температура функционального отказа T _{mal}	Время при Т _{mal}	Область применения	
	°C	годы	°C	годы	°C	часы		
1	60	49	80	1	95	100	Горячее водоснабжение (60 °C)	
2	70	49	80	1	95	100	Горячее водоснабжение (70°C)	
4	20	2,5	70	2,5	100	100	Напольное отопление и низкотемпературные	
	40	20						системы радиаторного
	60	25					отопления	
5	20	14	90	1	100	100	Высокотемпературные	
	60	25					системы радиаторного отопления	
	80	10						

Каждый класс эксплуатации рассматривается с рабочим давлением 4, 6, 8 или 10 бар. Максимальные значения S_{саlс.max}, рассчитанные на основании толщины стенки труб, приведены в таблице.

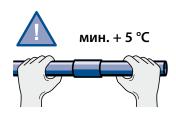

Расчетное давление р _D	Классы эксплуатации							
	Класс 1	Класс 2	Класс 4	Класс 5				
Бары	Значения S _{calc.max}							
4	6,9	5,3	6,9	4,8				
6	5,2	3,6	5,5	3,2				
8	3,9	2,7	4,1	2,4				
10	3,1	2,1	3,3	1,9				

Пример:

Серия труб S 2,5 (напорный ряд PN 20)

Согласно таблице должно иметь силу неравенство S \leq S_{calc.max} Трубы, предназначенные для 1 класса эксплуатации, можно использовать 49 лет при давлении 10 бар (2,5 \leq 3,1) и при температуре 60 °C (макс. температура горячей воды 60 °C – защита от ожогов), 1 год при температуре 80 °C (временное повышение температуры) и 100 часов при температуре 95 °C (аварийное состояние). Аналогичным образом проверяется это неравенство и для других классов эксплуатации. На трубах PN 20 данная информация записана в форме: class 1/10 bar, 2/8 bar, 4/10 bar, 5/6 bar.

4. Изотермы прочности PPR

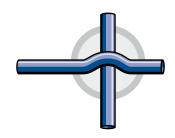

Максимальный срок эксплуатации при низких давлениях соответствует значению в крайней правой точке изотермы

Х. Инструкция по монтажу

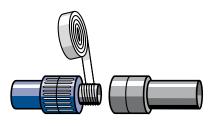
1. Общие сведения

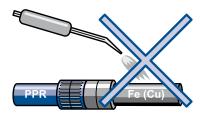
При монтаже можно использовать лишь те детали, которые не были повреждены или загрязнены во время транспортировки или хранения.

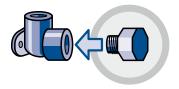
Минимальная температура при монтаже полипропиленовых труб +5 °C. При более низких температурах трудно обеспечить условия для качественного соединения.


При транспортировке, хранении и монтаже оберегайте детали полипропиленовых систем от механических повреждений.

Минимальная температура для сгибания полипропиленовых труб без нагрева $+15\,^{\circ}\text{C}$ (монтаж теплого пола). Минимальный радиус изгиба труб диаметром 16-32 мм равен 8-ми диаметрам изгибаемой трубы.

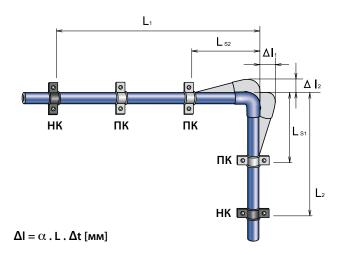

Детали полипропиленовых систем необходимо беречь от открытого огня.


Пересечение трубопровода производится при помощи специальной детали – перекрещивания.


Соединение полипропиленовых деталей производится при помощи полифузной, электромуфтовой или стыковой сварки. При сварке возникает гомогенный шов высокого качества. При сварке необходимо точно соблюдать правила монтажа и использовать специальные качественные инструменты. Детали системы Ekoplastik PPR не рекомендуется сваривать с деталями других производителей.

Для резьбовых соединений необходимо использовать имеющиеся фитинги с резьбой. Нарезать резьбу на полипропиленовых деталях запрещается. Для уплотнения резьбовых соединений применяется тефлоновая лента или специальные уплотняющие материалы (не рекомендуется применять сантехнический лен и паклю).

Находящийся за комбинированным фитингом металлический трубопровод нельзя соединять сваркой или пайкой вблизи фитинга во избежание переноса тепла на фитинг.

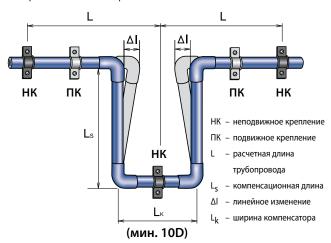


Для перекрытия настенных колен и других деталей, предназначенных для присоединения к системе водоразборной арматуры, на время гидравлических испытаний давлением или отделочных работ рекомендуется пользоваться пластиковыми пробками с резьбой.

Система Ekoplastik PPR

2. Линейное расширение и сжатие.

Разница температур при монтаже и эксплуатации трубопровода приводит к возникновению линейного расширения или сжатия.



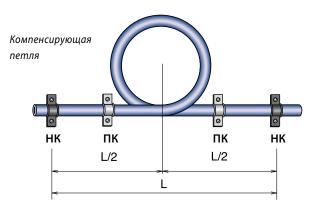
- ΔІ линейное изменение [мм]
- lpha коэффициент линейного теплового расширения [мм/м °C], для труб Ekoplastik PPR lpha = 0,12 и Ekoplastik Stabi lpha = 0,05
- L расчетная длина (расстояние между двумя соседними неподвижными креплениями по прямой линии) [м]
- Δt разница температур при монтаже и эксплуатации [°C]

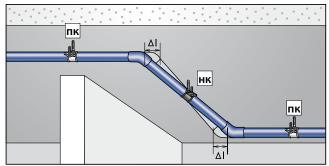
$$L_s = k \cdot \sqrt{(D \cdot \Delta I)}$$
 [MM]

- Ls компенсационная длина
- k константа материала, для PPR k = 30
- D наружный диаметр трубопровода [мм]
- ∆I линейное изменение [мм], вычисленное на основе предыдущего расчета

П-образный компенсатор

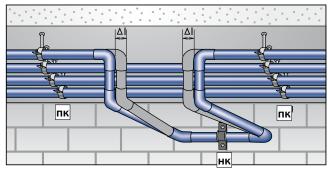
 $L_k = 2$. $\Delta I + 150$ [мм] где $L_k \ge 10.D$

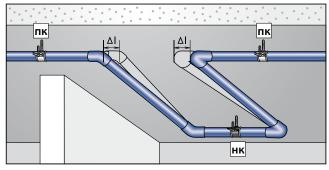

При условии: $L_k = (мин.10D)$


Если линейные изменения трубопровода должным образом не компенсированы, то в стенках труб возникают дополнительные напряжения растяжения и сжатия, сокращающие срок эксплуатации трубопровода. У полипропилена для компенсации линейных изменений используется гибкость самого материала. Прокладку трубопроводов необходимо выполнять так, чтобы труба могла свободно двигаться в пределах величины расчетного расширения. Это достигается за счет компенсирующей способности элементов трубопровода (на изгибе трубопровода) или установкой компенсаторов линейных изменений.

Подходящим способом компенсации линейного расширения является тот, при котором трубопровод отклоняется в перпендикулярном направлении от своей оси, а на этом перпендикуляре оставляется компенсационная длина L_{S_i} которая обеспечит то, что при температурном изменении длины трубопровода не возникнут значительные дополнительные напряжения растяжения и сжатия. Компенсационная длина L_{S_i} (длина компенсатора) зависит от вычисленного линейного изменения длины участка трубопровода, материала и диаметра трубопровода. Показатели линейного изменения ΔI и компенсационной длины L_{S_i} (длины компенсатора) можно также определить по графикам на стр. 15 и 16.

Таблица применения стандартной компенсирующей петли.


Диаметр трубы [мм]	Расстояние между неподвижными опорами L [м]		
	Stabi	PPR	
16	24	8	
20	27	9	
25	30	10	
32	36	12	
40	42	14	



Компенсация линейного расширения за счет поворота трассы трубопровода

При изменении высоты трубопровода

П-образный компенсатор

Примеры расчетов компенсации для трубопровода Ekoplastik PPR 1) Задание:

Величина	Обозначение	Значение показателя	Единица измерения
Линейное измене	ние ΔΙ	?	мм
Коэффициент лине	йного		
теплового расшире	ения α	0,12	мм/м °С
Расчетная длина	L	10	М
Эксплуатационная			
температура в труб	ốe t _ρ	60	°C
Температура			
в момент монтажа	t _m	20	°C
Разница температу	р при монтаже		
и эксплуатации (Δt	$t = t_{\rho} - t_{m}$ Δt	40	°C

Решение: $\Delta I = \alpha . L . \Delta t [MM]$

 $\Delta I = 0.12 . 10 . 40 = 48 \,\text{mm}$

2) Задание:

Величина	Обозначені	ие	Значение показателя	Единица измерения
Компенсационная	длина	Ls	?	мм
Константа материал	ıa PPR	k	30	-
Наружный диаметр	трубы	D	40	ММ
Линейное изменени (взято из предыдуш	' /	ΔΙ	48	ММ

Решение:

$$\begin{split} & L_s = k \; . \; \sqrt{(D \; . \; \Delta I) \; [\text{MM}]} \\ & L_s = 30 \; . \; \sqrt{(40 \; . \; 48)} = \textbf{1315 MM} \end{split}$$

3) Задание:

Величина	Обозначен	ние	Значение показателя	Единица измерения
Ширина компенсатор	a	L _k	?	мм
Наружный диаметр тру		D	40	ММ
Линейное изменение т (взято из предыдущего	' '	ΔΙ	48	ММ

Решение: $L_k = 2 . \Delta I + 150 [MM]$

 $L_k = 2 .48 + 150 = 246 \,\text{MM}$

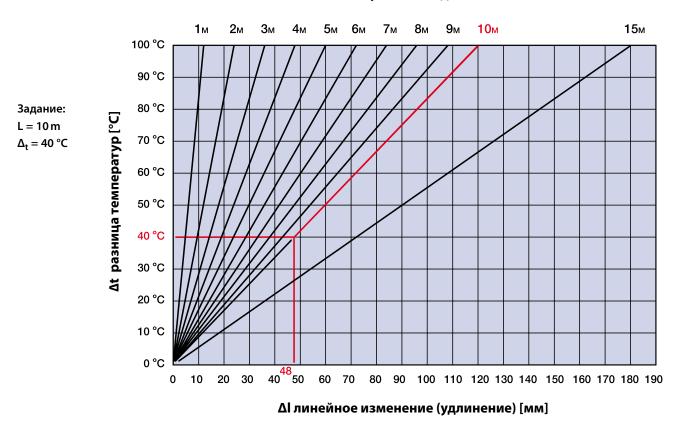
 $L_k \ge 10 D$

 $246 \, \text{MM} < 10 . 40 \Rightarrow L_k = 400 \, \text{MM}$

Для компенсации линейного расширения можно также использовать предварительное напряжение трубопровода, позволяющее сократить компенсационную длину. Направление предварительного напряжения противоположно предполагаемому линейному изменению.

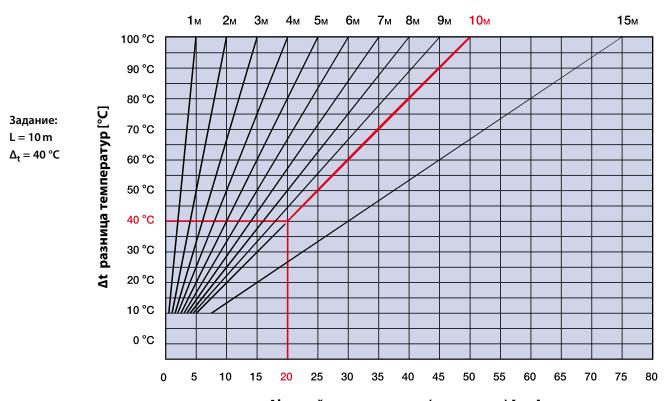
4) Задание:

Величина	Обозначение	Значение показателя	Единица измерения
Компенсационная д при предварительн напряжении	-	?	мм
Константа материала	PPR k	30	-
Наружный диаметр т	рубы D	40	мм
Линейное изменение (взято из предыдуще	' /	48	мм


 $L_{sp} = k \cdot \sqrt{(D \cdot \Delta I/2)}$ [MM] Решение:

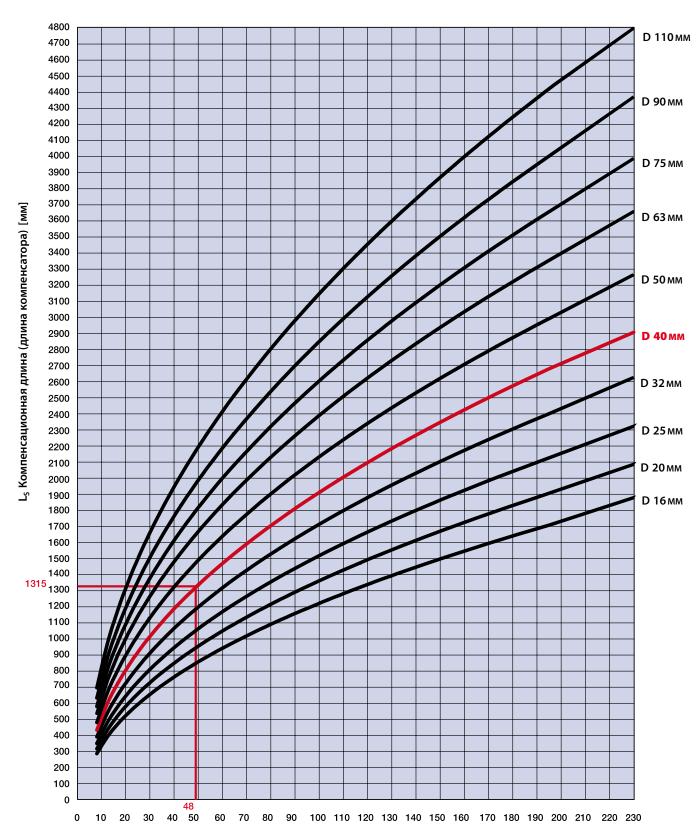
 $L_{sp} = 30 . \sqrt{(40 . 24)} =$ **930 mm**

Вычисленная компенсационная длина L_{S} (длина компенсатора) – это участок трубопровода без каких-либо опор или креплений, которые бы препятствовали температурному изменению длины трубопровода. Компенсационная длина L_S (длина компенсатора) не должна превышать максимально допустимое расстояние между опорами, зависящее от диаметра трубопровода и температуры рабочей среды (см. главу Х раздел 3).


Линейное изменение трубопровода Ekoplastik PPR

L расчетная длина

Линейное изменение трубопровода Ekoplastik Stabi


L расчетная длина

Определение компенсационной длины L_s

Пример для трубопровода D 40

ΔΙ Линейное изменение (удлинение) [мм]

3. Расстояние между опорами трубопровода

Максимальное расстояние между опорами трубопровода Ekoplastik PPR S 5 (PN 10) (горизонтальный трубопровод)

Ø трубы	Расстояние [см] при температуре					
[мм]	20 °C	30 °C	40 °C	50 °C	60 °C	80 °C
16	75	70	70	65	65	55
20	80	75	70	70	65	60
25	85	85	85	80	75	70
32	100	95	95	90	85	75
40	110	110	105	100	95	85
50	125	120	115	110	105	90
63	140	135	130	125	120	105
75	155	150	145	135	130	115
90	165	165	155	150	145	125
110	185	180	175	165	160	140

Максимальное расстояние между опорами трубопровода Ekoplastik PPR S 2,5 (PN 20) (горизонтальный трубопровод)

Ø трубы	Pacci	Расстояние [см] при температуре					
[MM]	20 ℃	30 °C	40 °C	50 °C	60 °C	80 °C	
16	90	85	85	80	80	65	
20	95	90	85	85	80	70	
25	100	100	100	95	90	85	
32	120	115	115	110	100	90	
40	130	130	125	120	115	100	
50	150	150	140	130	125	110	
63	170	160	155	150	145	125	
75	185	180	175	160	155	140	
90	200	200	185	180	175	150	
110	220	215	210	195	190	165	

Максимальное расстояние между опорами трубопровода Ekoplastik PPR S 3,2 (PN 16) (горизонтальный трубопровод)

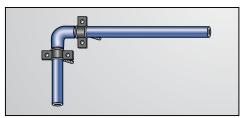
Ø трубы	Расстояние [см] при температуре					
[мм]	20 ℃	30 °C	40 ℃	50 °C	60 °C	80 °C
16	80	75	75	70	70	60
20	90	80	80	80	70	65
25	95	95	95	90	80	75
32	110	105	105	100	95	80
40	120	120	115	100	105	95
50	135	130	125	120	115	100
63	155	150	145	135	130	115
75	170	165	160	150	145	125
90	180	180	170	165	160	135
110	200	195	190	180	175	155

Максимальное расстояние между опорами трубопровода Ekoplastik STABI S 3,2 (PN 20 TESTED) не зависит от температуры воды (горизонтальный трубопровод)

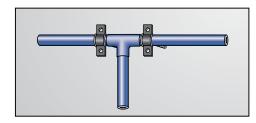
Ø трубы	[см]
[MM]	
16	110
20	120
25	140
32	145
40	150
50	155
63	165
75	170
90	190
110	205

Для вертикальных трубопроводов максимальное расстояние между опорами умножается на коэффициент 1,3.

4. Крепление трубопровода

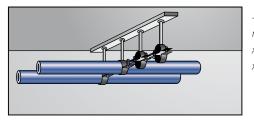

При монтаже трубопроводной трассы необходимо принимать во внимание свойства полипропилена и в первую очередь линейное температурное расширение, необходимость компенсации, условия эксплуатации (комбинация давления и температуры) и способ соединения. Крепление труб производится с использованием неподвижных и подвижных креплений (опор), с учетом предполагаемого линейного изменения длины трубопровода.

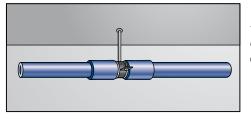
Способы крепления трубопровода

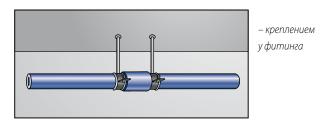

Для крепления трубопровода используют два типа опор:

4.1 Неподвижное крепление (НК)

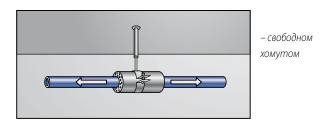

При этом способе крепления трубопровод не имеет возможности компенсации, т.е. в месте опоры нет возможности движения (скольжения) по оси трубопровода.

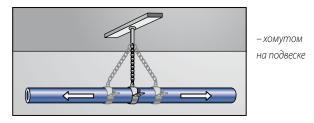

– на изгибе трубопровода

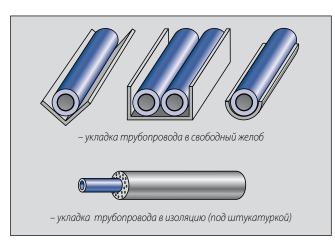

– в месте ответвления


– в месте установки арматуры

– при помощи жестких хомутов




– хомутом между фитингами


4. 2 Подвижное крепление (ПК)

При этом способе крепления трубопровод не может отклониться из-за линейного расширения от оси трассы, а может перемещаться только в осевом направлении. Крепление с помощью подвижных опор может осуществляться следующим образом:

4.3 Другие способы укладки пластикового трубопровода

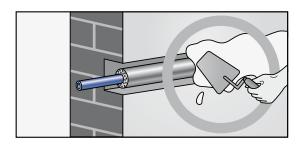
5. Прокладка трубопровода

Трубопровод монтируется с минимальным уклоном 0,5 % в направлении к самым низким местам, где имеется возможность его опорожнения при помощи дренажных (сливных) кранов или специальных клапанов с водоотливом (водоотводом).

Трубопровод необходимо разделить на участки, которые можно перекрыть в случае необходимости. Для перекрывания используются проходные вентили или шаровые краны (обычные или под штукатурку). Прежде чем приступить к монтажу вентилей и кранов необходимо проверить их работоспособность.

В местах установки водоразборной арматуры, разводящий трубопровод можно закончить с помощью настенных угольников или универсального настенного комплекта. При открытом способе монтажа,

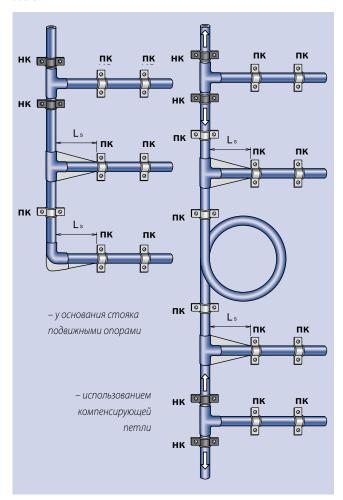
Система Ekoplastik PPR



с последующей отделкой гипсокартоном применяют НАСТЕННЫЙ УГОЛЬНИК ДЛЯ ГИПСОКАРТОНА (код SNKS020SXX) или НАСТЕННЫЙ КОМПЛЕКТ ДЛЯ ГИПСОКАРТОНА (код SNKK020SXX). Межосевое расстояние у настенных комплектов равно межосевому расстоянию смесителя и его можно настроить на 100, 135, 150 мм, в зависимости от типа смесителя. При скрытой прокладке (под штукатуркой) можно применить УНИВЕРСАЛЬНЫЙ НАСТЕННЫЙ КОМПЛЕКТ 20 х 1/2" (код SNKK020XXX) или 25 х 1/2" (код SNKK025XXX), межосевые расстояния которых можно отрегулировать в зависимости от типа смесителя на 100, 135 и 150 мм.

При установке водоразборной арматуры необходимо избегать крутильного напряжения настенных колен. Настенные колена желательно крепить на держателе настенного комплекта, обеспечивающего неподвижное положение, точно выставленных по осям смесителя, колен (для этого в держателях имеются отверстия для монтажа настенных колен, соответствующие шагу водоразборной арматуры).

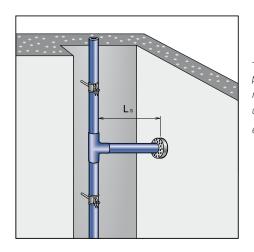
Монтаж разводящего трубопровода Ekoplastik PPR


Разводящий трубопровод монтируется из труб диаметром 16-20мм. Трубопровод обычно укладывается в канал или штробу. Канал для монтажа изолированного трубопровода должен быть свободным и обеспечивать компенсацию расширения трубопровода. Изоляция трубопровода не только предотвращает потери тепла, но и необходима для компенсации расширения и для защиты трубопровода от механических повреждений. Рекомендуется теплоизоляция из вспененного полиэтилена или пенополиуретана. Перед заделкой трубопровод необходимо основательно укрепить в канале (пластиковыми опорами или металлическими хомутами, гипсованием и т. д.). При прокладке трубопровода в монтажных шахтах необходимо обеспечить крепление трубопровода при помощи системы держателей, хомутов и опор. Трубопровод необходимо прокладывать изолировано, так чтобы было достаточное пространство для компенсации линейного расширения.

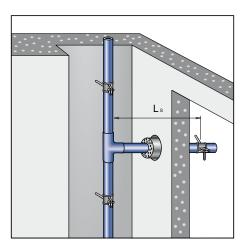
При скрытой прокладке трубопровода (в половых и потолочных конструкциях, в стенах) можно использовать гофротрубу (на трубопровод одеваются гибкие защитные трубы из полиэтилена), обеспечивающую защиту трубопровода. В то же время воздушное пространство между трубопроводом и защитной гофротрубой создает термическую изоляцию. Открытая прокладка пластикового трубопровода проводится в редких случаях, например, на коротких участках и в помещениях, к которым предъявляются не очень строгие эстетические требования (прачечные, технические помещения и т. д.) Нужно проявлять особую аккуратность при размещении опор, компенсаторов на отдельных участках трубопровода и качественной изоляции (если трубопровод холодной воды проложить свободно по стене отапливаемого помещения, возникает большая опасность конденсации влаги на стенке трубопровода). Трубопровод можно прокладывать открыто по стене только в тех помещениях, где нет опасности механического повреждения труб во время эксплуатации.

Монтаж стояков из труб Ekoplastik PPR

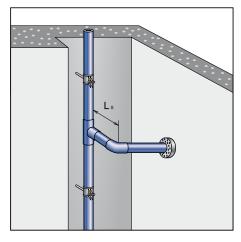
При монтаже стояков необходимо обращать особое внимание на размещение неподвижных опор, а также на создание адекватного способа компенсации линейного расширения. Компенсация стояков обеспечивается:



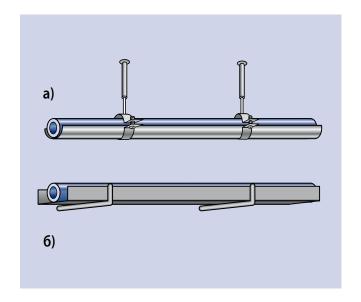
Если возникает необходимость разделить стояк на несколько компенсационных участков, то это делается при помощи установки неподвижных опор. На стояке неподвижная опора устанавливается под и над тройником у ответвления или у муфты в месте соединения труб, что одновременно предотвращает оседание стояка.



При проектировании ответвления разводящего трубопровода следует учитывать, что конструкция ответвления должна обеспечить компенсацию изменения длины стояка.


Это получается за счет:

– дополнительного расстояния между стояком и отверстием в стене


— соответствующего увеличения отверстия для вывода ответвления

– монтажа компенсирующего плеча

Монтаж горизонтального трубопровода Ekoplastik PPR

При монтаже горизонтального трубопровода особое внимание необходимо уделять компенсации линейного расширения и способу прокладки. Наиболее распространенным способом прокладки является прокладка в оцинкованных или пластиковых желобах, а так же открытая прокладка.

Компенсация линейного расширения чаще всего производится при помощи изменения трассы трубопровода или использования П-образных компенсаторов или компенсационных петель. Компенсация может быть решена с помощью подвесок или горизонтальных консольных опор. При варианте а) трубопровод изолируется (см. главу X раздел 7) вместе с желобами, при варианте 6) в желоба укладывается уже изолированный трубопровод.

Монтаж трубопровода Ekoplastik Stabi

Трубы Ekoplastik Stabi благодаря алюминиевому слою имеют значительно меньший коэффициент линейного расширения, большую жесткость и большую механическую сопротивляемость, чем Ekoplastik PPR. Трубопровод Ekoplastik Stabi можно монтировать описанными выше способами (как цельнопластиковый). Иными словами, используя классический принцип решения компенсаций, при использовании возможности большего расстояния между опорами и значительно меньших компенсационных расстояниях. При укладке в желоб можно использовать так называемый жесткий монтаж. Это означает, что неподвижные опоры крепятся на трубопроводе таким образом, что термическое расширение переводится в материал трубопровода и визуально не проявляется. Необходимым условием такого монтажа являются хомуты, которые смогут удержать трубопровод и будут достаточно прочно закреплены. Разводящий трубопровод из Ekoplastik Stabi можно использовать при прокладке трубы вдоль строительной конструкции к отдельно стоящей водоразборной арматуре. Это достигается благодаря большей жесткости трубопровода. Его применение также выгодно в половых конструкциях, потому что используется постоянность формы и большая механическая жесткость трубопровода.

6. Соединение в систему

Трубопроводную систему Ekoplastik PPR можно соединять сваркой или механически (резьбой, фланцами).

Соединение трубы с фитингом как у трубопровода Ekoplastik PPR так и Ekoplastik Stabi производится одинаково (фитинги одни и те же). Перед сваркой труб Ekoplastik Stabi необходимо специальным обрезным устройством срезать верхний слой PPR и средний алюминиевый слой трубы на глубину муфты фитинга.

Сварка

Существует три основных способа сварки полимерных труб: стыковая, полифузная и электромуфтовая.

При сварке труб следует руководствоваться рабочей инструкцией и использовать соответствующие приборы, позволяющие задавать режимы работы и контролировать их параметры.

Разрезание труб

Трубы можно разделять (резать, пилить) только острыми, хорошо наточенными инструментами. Рекомендуется использовать специальные ножницы или труборезы.

Резьбовые соединения, переходы пластик - металл

Для переходных соединений пластик – металл в трубопроводах для горячей воды и отопления используются исключительно переходы с запрессованной латунной никелированной вставкой с внутренней и наружной резьбой.

Для затяжки резьбовых соединений с запрессованной вставкой используются натяжные ключи с лентой, если на переходе прямо на металлической части нет приспособления для использования обычного ключа.

ПРЕДУПРЕЖДЕНИЕ:

По термо-техническим и физикомеханическим причинам запрещается использование переходов с пластиковой резьбой в санитарной технике!

Переходы с пластиковой резьбой можно использовать, например, для прокладки временных водопроводных сетей. Настенные

угольники и универсальные настенные комплекты до момента монтажа водоразборной арматуры закрывают пластмассовыми пробками.

Герметизация соединений

Герметизация резьбовых соединений производится исключительно при помощи тефлоновой ленты, тефлоновой нити или специальной уплотняющей пасты (не рекомендуется применять сантехнический лен или паклю).

7. Изоляция

Трубопровод горячей воды, равно как и трубопровод отопления, необходимо изолировать во избежание термических потерь, а трубопровод холодной воды должен быть защищен изоляцией от нагревания и образования конденсата на трубах.

Изоляция трубопровода холодной воды производится в целях избежания нагрева выше 20 °C и важна с точки зрения сохранения санитарно-гигиенических норм питьевой воды. Поддержание температуры воды на допустимом максимуме, установленном санитарногигиеническими нормами во избежание ошпаривания, является мерой предотвращения размножения патогенных бактерий. Соблюдение температуры горячей воды при работающей циркуляции и технические решения в месте нагревания воды (напр. термическая стерилизация) являются важной частью системы защиты против появления бактерий, напр., типа Legionella pneumophila (подробнее смотри стр. 5, глава V, раздел 1)

Толщина и тип изоляции устанавливается на основании термического сопротивления используемой изоляции, влажности воздуха в помещении и разницы между температурой воздуха в помещении и температурой протекающей по трубам воды.

Трубопровод необходимо изолировать по всей длине трассы, включая фитинги и арматуру. Необходимо соблюдать проектную минимальную толщину изоляции трубопровода вдоль всей длины трассы (это значит, что изоляция, которая надевается на трубопровод в разрезанном виде, после монтажа должна быть вновь соединена в целостную деталь, например, при помощи клея, шпилек, изоляционной ленты или скотча).

Минимальная толщина термической изоляции трубопровода холодной воды

Прокладка трубопровода	Толщина изоляции при λ = 0,040 Ват/мК
Открытая прокладка в неотапливаемых помещениях (напр. подвал)	4 мм
Открытая прокладка в отапливаемых помещениях	9мм
Трубопровод в монтажном канале без параллельной прокладки горячего трубо	провода 4мм
Трубопровод в монтажном канале пролож параллельно с горячим трубопроводом	кенный 13 мм
Трубопровод в канавке под штукатуркой проложенный отдельно	4мм
Трубопровод в канавке под штукатуркой проложенный параллельно	
с горячим трубопроводом Забетонированный трубопровод	13 мм 4 мм

Примечание: для вычисления других термических характеристик изоляции необходимо снова рассчитать толщину изоляции. При подаче горячей воды необходимо учитывать, что пластиковая труба располагает лучшими термическими изоляционными качествами, чем метаплическая.

Монтаж пластикового трубопровода позволяет значительно сократить эксплуатационные расходы!

При большом отборе воды (напр. ванны, стиральные машины и т.п.) тепловые потери в неизолированном пластиковом трубопроводе примерно на 20 % ниже, чем потери при подаче воды по металлическим трубам. Изоляция трубопровода позволяет сэкономить еще примерно 15% тепла. При малом и кратковременном расходе, при котором трубопровод не успевает нагреться до эксплуатационной температуры, термические потери пластикового водопровода примерно на 10% ниже, чем металлического, при очень большом расходе экономия составляет примерно 20 %.

Толщина изоляции трубопровода горячей воды обычно колеблется между 9 и 15 мм при термическом сопротивлении $\lambda = 0,040$ Вт/мК.

8. Испытание давлением

Заполнение смонтированной сети водой можно осуществлять не ранее чем через час после выполнения последнего сварного соединения. По окончании монтажа сети необходимо произвести испытание давлением при следующих условиях:

испытательное давление: минимум 1,5 МПа (15 бар) **начало испытания:** минимум 12 часов после

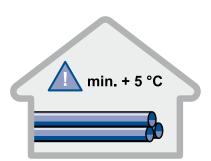
удаления воздуха из системы

продолжительность

испытания: 60 минут

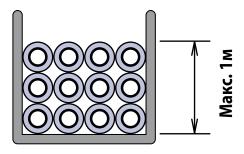
максимальное

падение давления: 0,02 МПа (0,2 бар)


Готовый к испытанию трубопровод должен быть смонтирован по проекту, уложен, но еще не скрыт в строительных конструкциях.

Испытание трубопровода проводится без установки водомеров и другой арматуры, за исключением воздухоспускных устройств. Вмонтированные затворы должны быть открыты. Водоразборная арматура может быть установлена только в том случае, если она способна выдержать испытательное давление. Обычно ее на время испытания давлением заменяют пробкой. Трубопровод наполняется, начиная с самого низкого места, воздухоспускные устройства труб полностью открываются и потом постепенно закрываются, как только из них начнет вытекать вода без воздушных пузырей. Длина испытуемого трубопровода устанавливается с учетом местных условий, но не должна превышать 100 м.

После наполнения водой внутренний водопровод стабилизируется испытательным давлением не менее 12 часов. После этого давление поднимается на испытательную величину (15 бар). Испытание давлением длится 60 минут, и во время испытания допускается максимальное падение давления 0,02 МПа. Если падение превышает эту цифру, необходимо найти место утечки воды, устранить неполадку и заново провести испытание давлением. Во время испытания давлением необходимо составить протокол, напр., по образцу указанному в главе XII (этот протокол является одним из необходимых документов в случае рекламации).


XI. Складирование и транспортировка

Изделия необходимо оберегать от атмосферных осадков, ультрафиолетового излучения и от загрязнения.

Пластиковые детали необходимо хранить в складских помещениях, расположенных отдельно от помещений, где складируются растворители, краски, клей и тому подобные материалы.

Рекомендованная температура хранения – не ниже +5 °C. При обращении с трубами при более низких температурах необходимо соблюдать повышенную осторожность.

Полипропиленовые трубы следует укладывать на стеллажи или такие поверхности, которые исключают прогиб труб. Пластиковые фитинги хранятся в мешках, коробках, контейнерах, ящиках и т.п. При хранении труб в пластиковых рукавах и фасонных изделий в пластиковых мешках высота штабеля не должна превышать 1метра. Различные виды труб и фитингов необходимо хранить отдельно друг от друга. Первыми нужно вывозить со склада детали, хранившиеся наиболее долго.

При транспортировке запрещается тянуть изделия по земле и кузову транспортного средства. Запрещается бросать изделия на землю и иные поверхности.

При перевозке на строительную площадку необходимо беречь детали от механического повреждения, а в помещении строительного объекта их надо уложить на поддоны или стеллажи, беречь от загрязнения, воздействия растворителей, контакта с отопительными приборами и механических повреждений. Детали доставляются с завода в упаковке (трубы в полиэтиленовых рукавах, фитинги в мешках или в картонных ящиках), в которой их нужно хранить вплоть до монтажа в целях охраны от загрязнения.

XII. Протокол испытания давлением

Описание уст	гановки:					
Место:						
Объект:						
	Протокол испытаний					
Длина смонтированного	трубопровода:					
Диаметр трубы [мм]	Длина трубы [м]	Маркировка на трубе				
16						
20						
25						
32						
40						
50						
63 75						
90						
110						
Самое высокое место	о выхода	м над манометром				
Начало испытані	ия:	Испытание давлением: Конец испыта	ния:			
		МПа				
		испытания				
_						
Tesynblat victibile	лпил					
Заказчик: (подтверждает подписью приём монтажа системы без недостатков)						
место	место дата печать и подпись					
Поставщик:						
место)	дата	печать и подпись			

XIII. Полифузная сварка

1. Необходимые инструменты

- Электросварочный аппарат для полифузной сварки, снабженный сварочными насадками необходимого размера.
- 2/ Контактный термометр.
- Специальные ножницы или труборез, в случае необходимости ножовка по металлу.
- 4/ Острый карманный нож с коротким лезвием.
- 5/ Тряпка из несинтетического материала.
- 6/ Спирт для обезжиривания.
- 7/ Метр или рулетка, маркер.
- 8/ Для сварки деталей диаметром, превышающим 50 мм, шабер и монтажное приспособление.
- 9/ Обрезное устройство для обработки труб Ekoplastik Stabi.

2. Подготовка инструмента

Прежде всего, плотно прикрепим к сварочному аппарату сварочные насадки (при помощи винтов – в зависимости от типа сварочного аппарата). При помощи регулятора сварочный аппарат настроим на температуру 250 – 270 °C и включим в сеть. Период нагревания сварочного аппарата зависит от условий окружающей среды. Во избежание повреждения тефлонового слоя в нагретом состоянии, тряпочкой из несинтетического материала очистим сварочные насадки от загрязнения, оставшегося от предыдущей сварки. Работу со сварочным аппаратом можно начинать после того, как с помощью LED – диода и контактного термометра установим, что он нагрет до необходимой температуры. Контактный термометр служит для проверки температуры насадки (250 – 270 °C).

Пару раз отрезав опытный образец трубы проверим работу специальных ножниц или режущего ролика. При опытном разрезе необходимо избегать впадин (сдавливания) наружного диаметра трубы. В случае, если это произойдет, инструмент необходимо починить, т.е. наточить.

3. Подготовка материала

Перед началом работы весь материал необходимо основательно просмотреть. У деталей не должна быть каким-либо образом ослаблена стенка, перед монтажом проверим функциональность вентилей и кранов, а металлические резьбы проверим ответной деталью. Сварочные насадки и части труб, которые засовываются в насадку, вычистим и обезжирим (подходящим средством являются чистящие салфетки TANGIT).

Фитинг наденем на насадку и проверим, не сидят ли они слишком свободно. Фитинги, которые шатаются на насадке, отбракуем!!!

4. Процесс сварки

1/ Отмерим и отрежем необходимую длину трубы. При использовании ножовки по металлу ножом очистим край трубы от заусениц. При соединении трубопровода Ekoplastik Stabi обрезным устройством устраним верхний пластиковый и средний алюминиевый слой на длину входа трубы в муфту фитинга. С обработанной таким образом трубой Ekoplastik Stabi работаем так же, как и с цельнопластиковой трубой Ekoplastik PPR.

2/ Далее рекомендуется ножом или специальным приспособлением скосить под углом 30 – 45° наружный конец трубы, предназначенный для нагревания. Это в первую очередь касается диаметров больших, чем 40 мм. Это поможет избежать сгребания материала при засовывании конца трубы в фитинг.

3/ При сварке более крупных деталей (диаметром больше 40 мм) очень важно проконтролировать овальность и абсолютно необходимо перед сваркой соскоблить окисленный слой (тол. 0,1 мм) с поверхности трубы по длине соединения. Окисленный слой негативно влияет на качество сварки.

4/ Рекомендуем при помощи фломастера или маркера обозначить на трубе длину ее соединения с фитингом, руководствуясь глубиной муфты фитинга. При этом необходимо учитывать, что конец трубы не должен быть вдвинут до упора в муфту фитинга. Необходимо оставить щель минимум в 1 мм для предотвращения сужения прохода трубы в месте соединения.

5/ Рекомендуется дополнительно обозначить место соединения на трубе и на фитинге для того, чтобы избежать поворота свариваемой трубы относительно фитинга. Для этой цели можно использовать монтажные отметки на фитингах.

6/ После обозначения свариваемые поверхности необходимо очистить и обезжирить. Без обезжиривания может не произойти идеальное соединение свариваемых поверхностей! Теперь можно приступить к самому процессу нагревания.

Система Ekoplastik PPR

7/ В первую очередь на нагретую насадку наденем фитинг, у которого более толстые стенки, чем у трубы, и который дольше разогревается. Проверим, не сидит ли он на насадке слишком свободно. Если фитинг не прилегает к насадке одинаково плотно по всей длине, его необходимо отбраковать, так как неравномерное нагревание способствует некачественной сварке. После фитинга на нагретую насадку наденем трубу. Плотность прилегания должна быть такой, же как и фитинга.

8/ Обе части нагреваем в течение времени, установленного в таблице 1 на странице 26. Период нагревания начинается с момента, когда труба и фитинг по всей отмеченной длине надеты на насадку. Если труба и фитинг плохо надеты на насадку, возможен небольшой поворот обеих деталей (макс 10°) прежде чем они будут надеты на необходимую длину. Во время прогревания детали поворачивать запрещается, чтобы избежать сжатия материала.

9/ По окончании нагревания снимем трубу и фитинг с насадки и соединим их медленным, равномерным движением без осевого поворота, насадив трубу на фитинг на всю глубину до отметки.

В таблице 2 на странице 26 приведены временные показатели (макс. время перестановки) от снятия с насадки до вставления трубы в фитинг. В случае превышения указанного временного периода может произойти охлаждение расплавленного слоя, которое ведет к некачественной холодной сварке.

Свежий шов необходимо зафиксировать в течение 20-30 сек., пока не произойдёт частичное охлаждение шва, при котором будет уже невозможен обратный выход трубы из фитинга в результате сварочного давления и изменения положения фитинга по отношению к трубе.

Наполнение трубопровода водой возможно лишь через 1 час после проведения последнего сварочного шва.

Рекомендации к сварке больших диаметров:

Трубы диаметром менее 40 мм можно сваривать вручную. Более крупные детали, начиная с диаметра 50 мм рекомендуется сваривать при помощи монтажного приспособления, которое обеспечит необходимое прижимное усилие.

І. Подготовка трубопровода

обработка граней

соскабливание

II. Сварка

закрепление в аппарате и центровка, потом нагрев

перемещение после нагрева

готовое сварное соединение после охлаждения

Таб. 1

D [мм]	Время нагрева [c]	D [мм]	Время нагрева [c]
16	5	50	18
20	5	63	24
25	7	75	30
32	8	90	40
40	12	110	50

Таб. 2

D [мм]	Время перестановки не более [c]	Время остывания [мин]
16, 20, 25	4	2
32, 40, 50	6	4
63, 75, 90	8	6
110	10	8

XIV. Электромуфтовая сварка

1. Необходимые инструменты

- 1/ Аппарат для электромуфтовой сварки.
- 2/ Специальные ножницы или труборез.
- 3/ Тряпка из несинтетического материала.
- 4/ Спирт для обезжиривания.
- 5/ Метр или рулетка, маркер.
- 6/ Индивидуалное монтажное приспособление для закрепления положения трубы и фитинга.
- 7/ Для сварки деталей диаметром больше 50 мм, шабер.
- 8/ Обрезное устройство для обработки труб Ekoplastik Stabi.

2. Подготовка инструмента

Сварочный аппарат установим на рабочее место и размотаем подводящий кабель. Проверим функциональность режущих инструментов (см. полифузная сварка).

3. Процесс сварки

Трубы разрезаются при помощи ножниц или трубореза. Просмотрим трубы и фитинги и подготовим сварочный аппарат.

Подготовим трубы необходимой длины, скребком или специальным средством устраним окисленный слой и обезжирим (спиртом или Тангитом) наружную поверхность трубы и внутреннюю поверхность электромуфты.

Отметим глубину всовывания трубы в электромуфту. При работе с трубами Ekoplastik Stabi при помощи обрезного устройства устраним верхний пластиковый и средний алюминиевый слой по длине всовыва-

ния трубы в электромуфту. Трубу вставим в электромуфту. Необходимо прочно закрепить положение трубы в электромуфте, так как при нагреве из-за увеличения объема пластика происходит выталкивание трубы из фитинга.

Электросварочный аппарат подключим к сети (220 V) и подождем пока аппарат не нагреется до рабочей температуры. Контактными проводами соединим электромуфту со сварочным аппаратом. Для начала сварки нужно нажать на кнопку "старт", отключение происходит автоматически.

О правильном ходе сварки судим по выталкиванию материала с наружной поверхности фитинга в контрольных точках.

Трубопровод можно наполнять водой минимум через 1 час после проведения последнего шва.

Охлаждение места сварки является важным моментом перед последующими нагрузками. Необходимо предохранить место сварки от механических нагрузок (вращения, сжатия или давления в трубе).

XV. Ремонтный комплект для просверленного трубопровода

- Уникальная возможность быстрого ремонта поврежденной трубы – комплект должен быть у каждого сантехника.
- Значительно уменьшается объём отделочных работ (демонтаж и последующий монтаж облицовки).
- Насадка универсальна для всех типов стержневых сварочных аппаратов, включая угловые аппараты.
- Специальная насадка и ремонтные стержни входит в сварочный комплект со стержневым аппаратом.
- Komnлeкт предназначен для ремонта просверленного трубопровода Ekoplastik PPR и Ekoplastik Stabi.
- Комплект универсален для диаметров с 20 по 110 мм, для труб всех серий.
- Комплект работает на принципе полифузной сварки, и действительны для него все общие правила для полифузной сварки – см. стр. 24.

Необходимые инструменты: набор для ремонта, тряпка или салфетка для обезжиривания и высушивания, метр или рулетка, маркер, отвертка, ножницы (клещи), специальная насадка, стержневой сварочный аппарат. Сварочный аппарат с установленной насадкой ремонтного комплекта включить, настроить на максимальную температуру и подождать не менее, чем до второго нагревательного цикла.

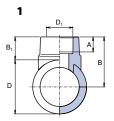
Просверленное отверстие рассверлить (откалибровать) сверлом 10 мм.

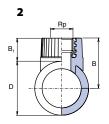
Высушить и обезжирить просверленное отверстие. На ремонтном стержне отметить расстояние, равное толщине стенки просверленной трубы + 2 мм (глубина ввода), на штыре насадки установить кольцевую отметку на расстоянии, равном толщине стенки просверленной трубы.

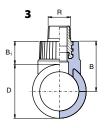
С началом нагрева ремонтного стержня медленно без поворота, вставить штырь насадки в подготовленное отверстие. Время нагрева – 5 сек.

Разогретый ремонтный стержень медленно без поворота вставить в нагретое отверстие.

После охлаждения лишнюю часть стержня обрезать ножницами.


При отсутствии опыта использования ремонтного комплекта рекомендуем провести две пробные сварки на куске трубы. Чтобы осуществить зрительный контроль результатов пробной сварки, необходимо разрезать сварные швы, проверить качество сварного соединения и величину образовавшихся наплывов.


XVI. Вварные седла


- Широкий ассортимент фасонных частей позволяет сделать ответвление труб диаметром 32, 40 мм и ответвление с внутренней и наружной резьбой (3/4").
- Для всех серий трубопроводов Ekoplastik PPR и Ekoplastik Stabi диаметрами 63, 75, 90, 110 мм.
- Сохранен принцип полифузной сварки типа С.
- Для каждого диаметра трубопровода специальные нагревательные насадки, универсальные для всех типов плоских сварочных аппаратов.
- Использование вварных седел экономит время и место- замена тройника и переходных муфт.
- В результате соединения седла и трубы по всей сварной площади достигается совершенный сварной шов.

Вварное седло

Вварное седло с металлической резьбой внутренней

Вварное седло с металлической резьбой наружной

	Размер	D	D ₁	Rp	R	Α	B ₁	В
		мм	мм			MM	мм	мм
	63x32	63	32			18	27,0	58,5
1	75x32	75	32			18	27,0	64,5
	90x32	90	32			18	27,0	72,0
	110x32	110	32			18	25,7	80,7
	110x40	110	40			21	25,7	80,7
	63x3/4"	63		3/4"			27,0	58,5
2	75x3/4"	75		3/4"			27,0	64,5
	90x3/4"	90		3/4"			27,0	72,0
	63x3/4"	63			3/4"		44,8	76,3
3	75x3/4"	75			3/4"		44,8	82,3
	90x3/4"	90			3/4"		44,8	89,8

Ответвление Ø32 мм на трубопроводе Ø 90 мм.

Старый способ (слева): применен тройник 90 мм, переходная муфта 90/63 мм и переходная муфта 63/32 мм.

Новый способ (справа): применено вварное седло 90/32 мм.

Необходимое оборудование: специальная фреза, дрель, тряпка или салфетка для обезжиривания, специальная насадка, вварное седло, плоский сварочный аппарат, нож для снятия фаски у армированных труб.

Специальной фрезой высверлить отверстие для седла

Вварное седло надеть на насадку так, чтобы были совмещены метки на седле и насадке. Прогреть отверстие и ввариваемое седло. Время прогревания как у трубы диаметром 32 мм – 8 с. Для вварных седел 110 х 32 и 110 х 40 время нагрева такое же, как для диаметра 40 мм – 12 сек.

Зачистить. Если применяется труба Stabi, то у высверленного отверстия необходимо скосить фаску. Очистить и обезжирить фасонную часть и высверленное отверстие.

Нагретое седло всунуть в нагретое отверстие и зафиксировать примерно на 16 с. Через час систему можно заполнить водой и нагрузить давлением.

XVII. Таблицы потерь давления

S 5 (PN	N 10) те	мпера	атура во	оды :	= 10 °C													
κ = 0,01	20 x 2,	2 мм	25 x 2,3	3 мм	32 x 2,9	Э мм	40 x 3,	7 мм	50 x 4,6	3 мм	63 x 5,8	3 мм	75 x 6,8	3 мм	90 x 8,2	2 мм	110 x 10) мм
Q	R	v	R	v	R	v	R	v	R	v	R	v	R	v	R	v	R	v
л/с	кПа/м	м/с	кПа/м	м/с	кПа/м	м/с	кПа/м	м/с	кПа/м	м/с	кПа/м	м/с	кПа/м	м/с	кПа/м	м/с	кПа/м	м/с
0,01	0.006	0,1																
0,01	0,000	0,1	0,006	0,1														
0,02	0,020	0,1	0,012	0,1	0.003	0,1												
0,04	0,067	0,2	0,012	0,1	0,006	0,1												
0,05	0,099	0,2	0,029	0,2	0,008	0,1	0,003	0,1										
0,06	0,137	0,3	0,039	0,2	0,011	0,1	0,004	0,1										
0,07	0,180	0,4	0,052	0,2	0,015	0,1	0,005	0,1	0,002	0,1								
0,08	0,227	0,4	0,065	0,3	0,019	0,2	0,006	0,1	0,002	0,1								
0,09	0,280	0,5	0,080	0,3	0,023	0,2	0,008	0,1	0,003	0,1								
0,10	0,337	0,5	0,097	0,3	0,028	0,2	0,009	0,1	0,003	0,1								
0,12	0,465	0,6	0,133	0,4	0,038	0,2	0,013	0,1	0,004	0,1	0.001	0,1						
0,14	0,611	0,8	0,175	0,4	0,050	0,3	0,017	0,2	0,006	0,1	0,002	0,1						
0,16	0,774	0,9	0,222	0,5	0,063	0,3	0,022	0,2	0,007	0,1	0,002	0,1	0,001	0,1				
0,18	0.954	1,0	0,273	0,6	0,078	0,3	0,027	0,2	0,009	0,1	0.003	0,1	0.001	0,1				
0,20	1,150	1,1	0,329	0,6	0,094	0,4	0,032	0,2	0,011	0,2	0,004	0,1	0,002	0,1				
0,30	2,370	1,6	0,674	1,0	0,192	0,6	0,065	0,4	0,022	0,2	0,007	0,1	0,003	0,1	0,001	0,1		
0,40	3,971	2,1	1,124	1,3	0,319	0,8	0,108	0,5	0,037	0,3	0,012	0,2	0,005	0,1	0,002	0,1	0.001	0,1
0,50	5,939	2,7	1,675	1,6	0,474	0,9	0,160	0,6	0,055	0,4	0,018	0,2	0,008	0,2	0,003	0,1	0,001	0,1
0,60	8,266	3.2	2,322	1,9	0,655	1,1	0,221	0,7	0,076	0,5	0,025	0,3	0,011	0,2	0,005	0,1	0.002	0,1
0,70	0,200	0,2	3,064	2,2	0,863	1,3	0,291	0,8	0,099	0,5	0,033	0,3	0,014	0,2	0,006	0,2	0,002	0,1
0,80			3,900	2,5	1,095	1,5	0,369	1,0	0,126	0,6	0,042	0,4	0,018	0,3	0,008	0,2	0,003	0,1
0,90			4,826	2,9	1,352	1,7	0,455	1,1	0.155	0,7	0.051	0,4	0,022	0.3	0,009	0,2	0.004	0,1
1,00			5,844	3,2	1,634	1,9	0,549	1,2	0,187	0,8	0,062	0,5	0,027	0,3	0,011	0,2	0,004	0,2
1,20			0,011	0,2	2,269	2,3	0,760	1,4	0,258	0,9	0,085	0,6	0,037	0,4	0,015	0,3	0,006	0,2
1,40					2,998	2,6	1,001	1,7	0,340	1,1	0,112	0,7	0,049	0,5	0,020	0,3	0,008	0,2
1,60					3,819	3,0	1,273	1,9	0,431	1,2	0,142	0,8	0,062	0,5	0,026	0,4	0,010	0,3
1,80					4,732	3,4	1,574	2,2	0,532	1,4	0,175	0,9	0,076	0,6	0,031	0,4	0,012	0,3
2,00					1,7.02	Ο, .	1,903	2,4	0,642	1,5	0,211	1,0	0,092	0,7	0,038	0,5	0,014	0,3
2,20							2,262	2,6	0,762	1,7	0,250	1,1	0,108	0,7	0,045	0,5	0,017	0,3
2,40							2,649	2,9	0,891	1,8	0,292	1,2	0,126	0,8	0,052	0,6	0,020	0,4
2,60							3,064	3,1	1,029	2,0	0,337	1,3	0,146	0,9	0,060	0,6	0,023	0,4
2,80							3,507	3,4	1,176	2,1	0,385	1,3	0,166	1,0	0,069	0,7	0,026	0,4
3,00							-,	-, -	1,332	2,3	0,436	1,4	0,188	1,0	0,078	0,7	0,030	0,5
3,20									1,497	2,4	0,489	1,5	0,211	1,1	0,087	0,8	0,033	0,5
3,40									1,671	2,6	0,545	1,6	0,235	1,2	0,097	0,8	0,037	0,5
3,60									1,854	2,8	0,604	1,7	0,260	1,2	0,107	0,8	0,041	0,6
3,80									2,045	2,9	0,666	1,8	0,287	1,3	0,118	0,9	0,045	0,6
4,00									2,246	3,1	0,731	1,9	0,314	1,4	0,129	0,9	0,049	0,6
4,20									2,454	3,2	0,798	2,0	0,343	1,4	0,141	1,0	0,054	0,7
4,40									2,672	3,4	0,868	2,1	0,373	1,5	0,153	1,0	0,058	0,7
4,60									2,898	3,5	0,940	2,2	0,404	1,6	0,166	1,1	0,063	0,7
4,80										,	1,016	2,3	0,436	1,6	0,179	1,1	0,068	0,8
5,00											1,093	2,4	0,469	1,7	0,193	1,2	0,073	0,8

К - коэффициент шероховатости

v - скорость движения воды (м/с)

R - потери давления по длине (кПа/м)

Q - расход воды (л/с)

S 5 (PN	I 10) те	мпера	атура во	оды =	50 °C													
κ = 0,01	20 x 2,	2 мм	25 x 2,3	3 мм	32 x 2,9	9 мм	40 x 3,	7 мм	50 x 4,	6 мм	63 x 5,8	3 мм	75 x 6,8	3 мм	90 x 8,2	2 мм	110 x 1	0 мм
Q	R	v	R	v	R	v	R	v	R	v	R	v	R	v	R	v	R	v
л/с	кПа/м	м/с	кПа/м	м/с	кПа/м	м/с	кПа/м	м/с	кПа/м	м/с	кПа/м	м/с	кПа/м	м/с	кПа/м	м/с	кПа/м	м/с
0,01	0,005	0,1																
0,02	0,016	0,1	0,005	0,1														
0,03	0,033	0,2	0,009	0,1	0,003	0,1												
0,04	0,055	0,2	0,016	0,1	0,004	0,1												
0,05	0,081	0,3	0,023	0,2	0,007	0,1	0,002	0,1										

Таблицы потерь давления

S 5 (PN	I 10) те	мпера	атура во	оды =	: 50 °C													
κ = 0,01	20 x 2,	2 мм	25 x 2,3	3 мм	32 x 2,9	9 мм	40 x 3	,7 мм	50 x 4,	6 мм	63 x 5,	8 мм	75 x 6,8	8 мм	90 x 8,	2 мм	110 x 1	0 мм
Q	R	v	R	v	R	v	R	v	R	v	R	v	R	v	R	v	R	v
л/с	кПа/м	м/с	кПа/м	м/с	кПа/м	м/с	кПа/м	м/с	кПа/м	м/с	кПа/м	м/с	кПа/м	м/с	кПа/м	м/с	кПа/м	м/с
0,06	0,112	0,3	0,032	0,2	0,009	0,1	0,003	0,1										
0,07	0,147	0,4	0,042	0,2	0,012	0,1	0,004	0,1	0,001	0,1								
0,08	0,186	0,4	0,053	0,3	0,015	0,2	0,005	0,1	0,002	0,1								
0,09	0,229	0,5	0,065	0,3	0,019	0,2	0,006	0,1	0,002	0,1								
0,10	0,277	0,5	0,079	0,3	0,023	0,2	0,008	0,1	0,003	0,1								
0,12	0,383	0,6	0,109	0,4	0,031	0,2	0,011	0,1	0,004	0,1	0,001	0,1						
0,14	0,505	0,8	0,143	0,4	0,041	0,3	0,014	0,2	0,005	0,1	0,002	0,1						
0,16	0,642	0,9	0,182	0,5	0,052	0,3	0,018	0,2	0,006	0,1	0,002	0,1	0,001	0,1				
0,18	0,793	1,0	0,224	0,6	0,064	0,3	0,022	0,2	0,007	0,1	0,002	0,1	0,001	0,1				
0,20	0,959	1,1	0,271	0,6	0,077	0,4	0,026	0,2	0,009	0,2	0,003	0,1	0,001	0,1				
0,30	2,003	1,6	0,561	1,0	0,158	0,6	0,053	0,4	0,018	0,2	0,006	0,1	0,003	0,1	0,001	0,1		
0,40	3,396	2,1	0,943	1,3	0,264	0,8	0,089	0,5	0,030	0,3	0,010	0,2	0,004	0,1	0,002	0,1	0,001	0,1
0,50	5,132	2,7	1,417	1,6	0,394	0,9	0,132	0,6	0,045	0,4	0,015	0,2	0,006	0,2	0,003	0,1	0,001	0,1
0,60	7,206	3,2	1,978	1,9	0,548	1,1	0,183	0,7	0,062	0,5	0,021	0,3	0,009	0,2	0,004	0,1	0,001	0,1
0,70			2,628	2,2	0,726	1,3	0,242	0,8	0,082	0,5	0,027	0,3	0,012	0,2	0,005	0,2	0,002	0,1
0,80			3,365	2,5	0,926	1,5	0,307	1,0	0,104	0,6	0,034	0,4	0,015	0,3	0,006	0,2	0,002	0,1
0,90			4,188	2,9	1,148	1,7	0,380	1,1	0,128	0,7	0,042	0,4	0,018	0,3	0,008	0,2	0,003	0,1
1,00			5,097	3,2	1,393	1,9	0,460	1,2	0,155	0,8	0,051	0,5	0,022	0,3	0,009	0,2	0,003	0,2
1,20					1,950	2,3	0,642	1,4	0,215	0,9	0,070	0,6	0,030	0,4	0,013	0,3	0,005	0,2
1,40					2,594	2,6	0,851	1,7	0,284	1,1	0,093	0,7	0,040	0,5	0,017	0,3	0,006	0,2
1,60					3,327	3,0	1,087	1,9	0,362	1,2	0,118	0,8	0,051	0,5	0,021	0,4	0,008	0,3
1,80					4,147	3,4	1,351	2,2	0,449	1,4	0,146	0,9	0,063	0,6	0,026	0,4	0,010	0,3
2,00							1,642	2,4	0,545	1,5	0,177	1,0	0,076	0,7	0,031	0,5	0,012	0,3
2,20							1,961	2,6	0,649	1,7	0,210	1,1	0,090	0,7	0,037	0,5	0,014	0,3
2,40							2,306	2,9	0,761	1,8	0,246	1,2	0,105	0,8	0,043	0,6	0,016	0,4
2,60							2,677	3,1	0,882	2,0	0,284	1,3	0,122	0,9	0,050	0,6	0,019	0,4
2,80							3,076	3,4	1,011	2,1	0,325	1,3	0,139	1,0	0,057	0,7	0,022	0,4
3,00									1,149	2,3	0,369	1,4	0,158	1,0	0,064	0,7	0,024	0,5
3,20									1,296	2,4	0,416	1,5	0,177	1,1	0,072	0,8	0,027	0,5
3,40									1,450	2,6	0,464	1,6	0,198	1,2	0,081	0,8	0,031	0,5
3,60									1,613	2,8	0,516	1,7	0,220	1,2	0,089	0,8	0,034	0,6
3,80									1,785	2,9	0,570	1,8	0,242	1,3	0,099	0,9	0,037	0,6
4,00									1,964	3,1	0,626	1,9	0,266	1,4	0,108	0,9	0,041	0,6
4,20									2,152	3,2	0,686	2,0	0,291	1,4	0,118	1,0	0,045	0,7
4,40									2,349	3,4	0,747	2,1	0,317	1,5	0,129	1,0	0,048	0,7
4,60									2,553	3,5	0,811	2,2	0,344	1,6	0,139	1,1	0,053	0,7
4,80											0,878	2,3	0,372	1,6	0,151	1,1	0,057	0,8
5,00											0,947	2,4	0,401	1,7	0,162	1,2	0,061	0,8

S 3,2 (I	PN 16)	темп	ература	вод	ы = 10 °	С														
κ = 0,01	16 x 2,2	2 мм	20 x 2,8	3 мм	25 x 3,	5 мм	32 x 4,4	4 мм	40 x 5,5	мм	50 x 6,9	9 мм	63 x 8,6	3 мм	75 x 10,	3 мм	90 x 12,	3 мм	110 x 15	5,1 мм
л/c	R кПа/м	v m/c	R кПа/м	v м/с	R кПа/м	V M/C	R кПа/м	V м/с	R кПа/м	v м/с	R кПа/м	v m/c	R кПа/м	v m/c	R кПа/м	v м/с	R кПа/м	v м/с	R кПа/м	v м/с
0.01	0,025	0,1	0,008	0,1																
0,02	0,083	0,2	0,027	0.1	0.009	0,1														
0,03	0,170	0,3	0,056	0,2	0,019	0,1	0.006	0,1												
0,04	0,282	0,4	0,093	0,2	0,032	0,2	0,010	0,1	0,003	0,1										
0,05	0,418	0,5	0,137	0,3	0,047	0,2	0,015	0,1	0,005	0,1										
0,06	0,576	0,6	0,189	0,4	0,065	0,2	0,020	0,1	0,007	0,1	0,002	0,1								
0,07	0,756	0,7	0,248	0,4	0,085	0,3	0,027	0,2	0,009	0,1	0,003	0,1								
0,08	0,958	0,8	0,313	0,5	0,108	0,3	0,034	0,2	0,012	0,1	0,004	0,1								
0,09	1,180	0,9	0,386	0,6	0,133	0,4	0,041	0,2	0,014	0,1	0,005	0,1	0,002	0,1						
0,10	1,422	1,0	0,465	0,6	0,160	0,4	0,050	0,2	0,017	0,2	0,006	0,1	0,002	0,1						
0,12	1,967	1,2	0,641	0,7	0,221	0,5	0,069	0,3	0,023	0,2	0,008	0,1	0,003	0,1	0,001	0,1				
0,14	2,588	1,4	0,843	0,9	0,290	0,6	0,090	0,3	0,031	0,2	0,010	0,1	0,003	0,1	0,002	0,1				
0,16	3,285	1,6	1,068	1,0	0,367	0,6	0,114	0,4	0,039	0,2	0,013	0,2	0,004	0,1	0,002	0,1				
0,18	4,056	1,8	1,316	1,1	0,452	0,7	0,140	0,4	0,048	0,3	0,016	0,2	0,005	0,1	0,002	0,1	0,001	0,1		
0,20	4,900	2,0	1,588	1,2	0,544	0,8	0,168	0,5	0,058	0,3	0,019	0,2	0,006	0,1	0,003	0,1	0,001	0,1		

S 3,2 (I	PN 16)	темп	ература	вод	ы = 10 °	C														
κ = 0,01	16 x 2,2	2 мм	20 x 2,8	3 мм	25 x 3,	5 мм	32 x 4,4	4 мм	40 x 5,5	мм	50 x 6,9	9 мм	63 x 8,6	3 мм	75 x 10,	3 мм	90 x 12,	3 мм	110 x 15	5,1 мм
Q	R	٧	R	V	R	٧	R	V	R	V	R	V	R	V	R	V	R	V	R	V
л/с	кПа/м	м/с	кПа/м	м/с	кПа/м	м/с	кПа/м	м/с	кПа/м	м/с	кПа/м	м/с	кПа/м	м/с	кПа/м	м/с	кПа/м	м/с	кПа/м	м/с
0,30	10,182	2,9	3,277	1,8	1,118	1,2	0,345	0,7	0,118	0,5	0,040	0,3	0,013	0,2	0,006	0,1	0,002	0,1	0,001	0,1
0,40			5,499	2,5	1,868	1,6	0,574	1,0	0,196	0,6	0,066	0,4	0,022	0,2	0,010	0,2	0,004	0,1	0,002	0,1
0,50			8,236	3,1	2,786	2,0	0,854	1,2	0,290	0,8	0,097	0,5	0,032	0,3	0,014	0,2	0,006	0,2	0,002	0,1
0,60					3,869	2,4	1,183	1,4	0,401	0,9	0,134	0,6	0,045	0,4	0,020	0,3	0,008	0,2	0,003	0,1
0,70					5,112	2,8	1,558	1,7	0,528	1,1	0,176	0,7	0,058	0,4	0,026	0,3	0,011	0,2	0,004	0,1
0,80					6,513	3,1	1,980	1,9	0,669	1,2	0,223	0,8	0,074	0,5	0,032	0,3	0,014	0,2	0,005	0,2
0,90					8,071	3,5	2,448	2,2	0,826	1,4	0,275	0,9	0,091	0,6	0,040	0,4	0,017	0,3	0,006	0,2
1,00							2,960	2,4	0,997	1,5	0,332	1,0	0,110	0,6	0,048	0,4	0,020	0,3	0,008	0,2
1,20							4,117	2,9	1,382	1,8	0,459	1,2	0,152	0,7	0,066	0,5	0,028	0,4	0,011	0,2
1,40							5,449	3,4	1,824	2,1	0,604	1,4	0,199	0,9	0,087	0,6	0,037	0,4	0,014	0,3
1,60									2,322	2,5	0,767	1,6	0,253	1,0	0,110	0,7	0,046	0,5	0,018	0,3
1,80									2,874	2,8	0,948	1,7	0,311	1,1	0,136	0,8	0,057	0,5	0,022	0,4
2,00									3,480	3,1	1,145	1,9	0,376	1,2	0,164	0,9	0,069	0,6	0,026	0,4
2,20									4,139	3,4	1,360	2,1	0,446	1,3	0,194	1,0	0,081	0,7	0,031	0,4
2,40											1,591	2,3	0,521	1,5	0,227	1,0	0,095	0,7	0,036	0,5
2,60											1,839	2,5	0,601	1,6	0,261	1,1	0,109	0,8	0,041	0,5
2,80											2,104	2,7	0,686	1,7	0,298	1,2	0,125	0,8	0,047	0,6
3,00											2,385	2,9	0,777	1,8	0,337	1,3	0,141	0,9	0,053	0,6
3,20											2,682	3,1	0,873	2,0	0,379	1,4	0,158	1,0	0,060	0,6
3,40											2,995	3,3	0,974	2,1	0,422	1,5	0,176	1,0	0,067	0,7
3,60											3,324	3,5	1,080	2,2	0,468	1,6	0,195	1,1	0,074	0,7
3,80													1,190	2,3	0,515	1,6	0,215	1,1	0,081	0,8
4,00													1,306	2,4	0,565	1,7	0,235	1,2	0,089	0,8
4,20													1,427	2,6	0,617	1,8	0,257	1,3	0,097	0,8
4,40													1,553	2,7	0,671	1,9	0,279	1,3	0,105	0,9
4,60													1,683	2,8	0,727	2,0	0,302	1,4	0,114	0,9
4,80													1,819	2,9	0,785	2,1	0,326	1,4	0,123	1,0
5,00													1,959	3,1	0,845	2,2	0,361	1,5	0,132	1,0

S 3,2 (PN 16)	темп	ератур	а вод	_{цы = 50}	°C														
κ = 0,01	16 x 2,2	2 мм	20 x 2,8	3 мм	25 x 3,	5 мм	32 x 4,	4 мм	40 x 5,5	ММ	50 x 6,9	9 мм	63 x 8,6	3 мм	75 x 10,	3 мм	90 x 12,	3 мм	110 x 15	5,1мм
Q л/c	R кПа/м	V M/C	R кПа/м	v м/с	R кПа/м	v м/с	R кПа/м	V M/C	R кПа/м	V M/C	R кПа/м	V M/C	R кПа/м	v m/c	R кПа/м	v м/с	R кПа/м	v м/с	R кПа/м	V M/C
0.04	0.000	0.4	0.007	0.4																
0,01	0,020	0,1	0,007	0,1																
0,02	0,068	0,2	0,022	0,1	0,008	0,1	0.005	0.4												
0,03	0,138	0,3	0,045	0,2	0,016	0,1	0,005	0,1	0.000	0.4										
0,04	0,230	0,4	0,075	0,2	0,026	0,2	0,008	0,1	0,003	0,1										
0,05	0,342	0,5	0,112	0,3	0,038	0,2	0,012	0,1	0,004	0,1	0.000									
0,06	0,473	0,6	0,154	0,4	0,053	0,2	0,016	0,1	0,006	0,1	0,002	0,1								
0,07	0,623 0,792	0,7	0,203	0,4	0,070	0,3	0,022	0,2	0,007	0,1	0,002	0,1								
0,08	0,792	0,8	0,257 0,317	0,5	0,088 0,108	0,3	0,027	0,2	0,009	0,1	0,003	0,1	0.001	0.1						
0,09		0,9	0,317	0,6	0,108	0,4	0,034	0,2	0,011	0,1	0,004	0,1	0.001	0,1						
0,10	1,183	1,0	0,382	0,6				,		0,2		0,1		0,1	0.001	0,1				
0,12 0,14	1,644 2,175	1,2 1,4	0,530	0,7	0,181	0,5	0,056	0,3	0,019 0,025	0,2	0,006	0,1	0,002	0,1	0,001 0,001	0,1				
0,14	2,175	1,4	0,888	0,9	0,238 0,302	0,6	0,073	0,3	0,025	0,2	0,008	0,1	0,003	0,1	0,001	0,1				
0,18	3,439	1,8	1,099	1,0	0,302	0,6	0,093	0,4	0,032	0,2	0,011	0,2	0,004	0,1	0,002	0,1	0.001	0,1		
0,16	4,172	2,0	1,330	1,1	0,373	0,7	0,113	0,4	0,039	0,3	0,013	0,2	0,004	0,1	0,002	0,1	0,001	0,1		
0,20	8,828	2,0	2,785	1,8	0,430	1,2	0,136	0,3	0.096	0,5	0,010	0,2	0,003	0,1	0,002	0,1	0,001	0,1	0.001	0,1
0,30	0,020	2,9	4,731	2,5	1,578	1,6	0,283	1,0	0,090	0,5	0,052	0,3	0,011	0,2	0,003	0,1	0,002	0,1	0,001	0,1
0,40			7,161	3,1	2,376	2,0	0,476	1,0	0,161	0,8	0,034	0,4	0.026	0,2	0,008	0,2	0,003	0,1	0,001	0,1
0,60			7,101	3,1	3,325	2,4	0,710	1,4	0,240	0,8	0,080	0,5	0,026	0,3	0,012	0,2	0,003	0,2	0,002	0,1
0,00					4,425	2,4	1,322	1,7	0,334	1,1	0,110	0,0	0,030	0,4	0,010	0,3	0,007	0,2	0,003	0,1
0,70					5,675	3,1	1,689	1,7	0,441	1,1	0,146	0,7	0,048	0,4	0,021	0,3	0,009	0,2	0,003	0,1
0,80					7,073	3,5	2,098	2,2	0,502	1,4	0,183	0,8	0,001	0,5	0,020	0,3	0,011	0,2	0,004	0,2
1,00					7,073	3,3	2,098	2,2	0,843	1,5	0,229	1,0	0,073	0,6	0,039	0,4	0,014	0,3	0,005	0,2
1,20							3,577	2,9	1,178	1,8	0,385	1,0	0,126	0,7	0,055	0,5	0,010	0,4	0,000	0,2
1,40							4,770	3.4	1,176	2,1	0,505	1,4	0,120	0,9	0,033	0,6	0,020	0,4	0,003	0,2
1,60							4,770	0,7	2,004	2,5	0,650	1,6	0,100	1,0	0,072	0,7	0,038	0,5	0,011	0,3
1,80									2,494	2,8	0,807	1,7	0,211	1,1	0,031	0,8	0,030	0,5	0,014	0,3
2,00									3.036	3,1	0,980	1,7	0,201	1,2	0,116	0,0	0.057	0,6	0,010	0,4
2,20									3,629	3,4	1,168	2,1	0,376	1,3	0,162	1,0	0,067	0,7	0,025	0,4
2,40									0,020	0, 7	1,372	2,3	0.441	1,5	0,102	1,0	0.079	0,7	0,030	0,5
2,60											1,592	2,5	0,511	1,6	0,220	1,1	0,091	0,8	0,034	0,5
2,80											1,828	2,7	0,585	1,7	0,251	1,2	0,104	0,8	0,039	0,6
3,00											2,079	2.9	0.664	1,8	0,285	1,3	0,118	0,9	0.044	0,6

Таблицы потерь давления

S 3,2 (I	PN 16)	темп	ератур	а вод	цы = 50	°C														
κ = 0,01	16 x 2,2	2 мм	20 x 2,8	3 мм	25 x 3,	5 мм	32 x 4,	4 мм	40 x 5,5	ММ	50 x 6,9	9 мм	63 x 8,6	3 мм	75 x 10,	3 мм	90 x 12,	3 мм	110 x 15	5,1мм
Q л/c	R кПа/м	v m/c	R кПа/м	v m/c	R кПа/м	v м/с	R кПа/м	V м/с	R кПа/м	V M/C	R кПа/м	v м/с	R кПа/м	v м/с	R кПа/м	v м/с	R кПа/м	v m/c	R кПа/м	v м/с
3,20											2,345	3,1	0,748	2,0	0,320	1,4	0,132	1,0	0,050	0,6
3,40											2,627	3,3	0,837	2,1	0,358	1,5	0,148	1,0	0,055	0,7
3,60											2,925	3,5	0,930	2,2	0,398	1,6	0,164	1,1	0,061	0,7
3,80													1,028	2,3	0,439	1,6	0,181	1,1	0,067	0,8
4,00													1,131	2,4	0,483	1,7	0,198	1,2	0,074	0,8
4,20													1,239	2,6	0,528	1,8	0,217	1,3	0,081	0,8
4,40													1,351	2,7	0,575	1,9	0,236	1,3	0,088	0,9
4,60													1,468	2,8	0,624	2,0	0,256	1,4	0,095	0,9
4,80													1,589	2,9	0,676	2,1	0,277	1,4	0,103	1,0
5,00													1,716	3,1	0,729	2,2	0,298	1,5	0,111	1,0

k = 0,01	16 x 2,2	2 мм	20 x 2,8	3 мм	25 x 3,	5 мм	32 x 4,4	4 мм	40 x 5,5	мм	50 x 6,9	9 мм	63 x 8,6	3 мм	75 x 10,	3 мм	90 x 12,	3 мм	110 x 15	5,1 мм
ν, Ο /Ω	R кПа/м	V M/C	R кПа/м	v м/с	R кПа/м	V M/C	R кПа/м	v м/с	R кПа/м	v м/с	R кПа/м	V M/C	R кПа/м	v м/с	R кПа/м	V M/C	R кПа/м	v м/с	R кПа/м	V M/C
11/0	KI Ia/IVI	IW/C	KI Ia/IVI	IVI/C	KI IA/IVI	IW/C	KI Ia/IVI	IVI/C	KI IA/IVI	IVI/C	KI Ia/IVI	W/C	KI Ia/IVI	IVI/C	NI Ia/IVI	IVI/C	KI IA/W	IVI/C	NI Id/IVI	IVI/C
0.01	0.015	0.1	0.004	0.1																
0,01	0,015 0,061	0,1	0,004	0,1	0.007	0.1														
0,02	,	0,2	0,019	0,1	0,007 0,014	0,1	0.004	0.1												
0,03 0,04	0,117 0,198	0,3	0,038 0,067	0,2	0,014	0,1	0,004 0,007	0,1	0,002	0.1										
0,04	0,198	0,4	0,087		0,023	0,2	0,007		0,002	,										
0,05	0,297	0,5	0,098	0,3 0,4	0,034	0,2	0,010	0,1 0,1	0,004	0,1 0,1	0.002	0,1								
0,06	0,414	0,6	0,134	0,4	0,047	0,2	0,013	0,1	0,005	0,1	0,002	0,1								
0,07	0,550	0,7	0,175	0,4	0,062	0,3	0.023	0,2	0,007	0,1	0.002	0,1								
0,08	0,855	0,8	0,271	0,6	0,074	0,3	0,023	0,2	0,008	0,1	0,003	0,1	0,001	0.1						
0,09	1,040	1,0	0,272	0,6	0,092	0,4	0,030	0,2	0,010	0,1	0,004	0,1	0,001	0,1						
0,10	1,462	1,0	0,326	0,8	0,111	0,4	0,034	0,2	0,011	0,2	0,004	0,1	0,001		0,001	0,1				
0,12	1,926	1,4	0,463	0,7	0,133	0,5	0,048	0,3	0,018	0,2	0,008	0,1	0,002	0,1 0,1	0,001	0,1				
0,14	2,479	1,4	0,012	1,0	0,263	0.6	0,082	0,3	0,021	0,2	0,008	0,1	0,003	0,1	0,001	0,1				
0,18	3,067	1,8	0,777	1,1	0,203	0,0	0,082	0,4	0,028	0,2	0,010	0,2	0,003	0,1	0,001	0,1	0,001	0,1		
0,18	3,496	2,0	1,180	1,1	0,327	0,7	0,097	0,4	0,034	0,3	0,011	0,2	0,004	0,1	0,002	0,1	0,001	0,1		
0,20	8.047	2.9	2,492	1,8	0,828	1,2	0,119	0,3	0,041	0,5	0,013	0,2	0,004	0,1	0,002	0,1	0,001	0,1	0,001	0.1
0,40	0,047	2,9	4,299	2,5	1,406	1,6	0,419	1,0	0,083	0,6	0,027	0,3	0,009	0,2	0,004	0,1	0,002	0,1	0,001	0,1
0,50			6,539	3,1	2,129	2,0	0,631	1,0	0,139	0,8	0,047	0,4	0,013	0,2	0,000	0,2	0,003	0,1	0,001	0,1
0,60			0,555	٥, ١	3,018	2,4	0,885	1,4	0,212	0,9	0.095	0,6	0,023	0,4	0,014	0,2	0,004	0,2	0,002	0,1
0,70					4,030	2,8	1,180	1,7	0,238	1,1	0,033	0,7	0,032	0,4	0,014	0,3	0,007	0,2	0,002	0,1
0,80					5,183	3,1	1,530	1,9	0,501	1,2	0,164	0,8	0,053	0,5	0,023	0,3	0,010	0,2	0,004	0,2
0,90					6,513	3.5	1,907	2,2	0,621	1,4	0,200	0,9	0,065	0,6	0,028	0,4	0,010	0,2	0,004	0,2
1,00					0,510	0,0	2,323	2,4	0,761	1,5	0,244	1,0	0,003	0,6	0,020	0,4	0,012	0,3	0,005	0,2
1,20							3,277	2,9	1,062	1,8	0,346	1,2	0,109	0,7	0,048	0,5	0,020	0,4	0,007	0,2
1,40							4,389	3,4	1,423	2,1	0,457	1,4	0,148	0.9	0,064	0,6	0,026	0,4	0,010	0,3
1,60							4,003	0,4	1,835	2,5	0,583	1,4	0,188	1,0	0,080	0,7	0,033	0,5	0,012	0,3
1,80									2,281	2,8	0,731	1,7	0,233	1,1	0,100	0,8	0,041	0,5	0,015	0,4
2,00									2,792	3,1	0,888	1,9	0,282	1,2	0,122	0,9	0,050	0,6	0,019	0,4
2,20									3,354	3,4	1,067	2,1	0,340	1,3	0,144	1,0	0,059	0,7	0,022	0,4
2,40									5,004	٥, ،	1,253	2,3	0,399	1,5	0,170	1,0	0,069	0,7	0,026	0,5
2,60											1,465	2,5	0,462	1,6	0,198	1,1	0,080	0,8	0,030	0,5
2,80											1,680	2,7	0,529	1,7	0,225	1,2	0,092	0,8	0,034	0,6
3,00											1,910	2,9	0,607	1,8	0,257	1,3	0,104	0,9	0,039	0,6
3,20											2,167	3,1	0,684	2,0	0,291	1,4	0,118	1,0	0,044	0,6
3,40											2,426	3,3	0,765	2,1	0,324	1,5	0,132	1,0	0,049	0,7
3,60											2,715	3,5	0,850	2,2	0,362	1,6	0,146	1,1	0,054	0,7
3,80											_, 5	5,5	0,947	2,3	0,402	1,6	0,164	1,1	0,060	0,8
4,00													1,042	2,4	0,439	1,7	0,181	1,2	0,066	0,8
4,20													1,140	2,6	0,483	1,8	0,198	1,3	0,072	0,8
4,40													1,244	2,7	0,528	1,9	0,216	1,3	0,078	0,9
4,60													1,360	2,8	0,520	2,0	0,234	1,4	0,085	0,9
4,80													1,472	2,9	0,621	2,0	0,253	1,4	0,003	1,0
5,00													1,589	3,1	0,672	2,2	0,233	1,5	0,099	1,0

S 5 (PN	I 20) те	мпер	атура і	водь	ı = 10 °C	;														
κ = 0,01	16 x 2,7	ММ	20 x 3,4	мм	25 x 4,2	ММ	32 x 5,4	мм	40 x 6,7	' мм	50 x 8,3	ММ	63 x 10,	5 мм	75 x 12,5	5 мм	90 x 15,0	О ММ	110 x 18	,3 мм
Q	R	v	R	v	R	v	R	v	R	v	R	v	R	v	R	v	R	v	R	v
л/с	кПа/м	м/с	кПа/м	м/с	кПа/м	м/с	кПа/м	м/с	кПа/м	м/с	кПа/м	м/с	кПа/м	м/с	кПа/м	м/с	кПа/м	м/с	кПа/м	м/с
0,01	0,035	0,1	0,012	0,1																
0,02	0,118	0,2	0,041	0,1	0,014	0,1	0,004	0,1												
0,03	0,240	0,3	0,084	0,2	0,028	0,1	0,009	0,1	0,003	0,1										
0,04	0,399	0,5	0,140	0,3	0,047	0,2	0,015	0,1	0,005	0,1										
0,05	0,591	0,6	0,207	0,4	0,070	0,2	0,022	0,1	0,007	0,1	0,003	0,1								
0,06	0,816	0,7	0,286	0,4	0,096	0,3	0,030	0,2	0,010	0,1	0,004	0,1								
0,07	1,071	0,8	0,375	0,5	0,126	0,3	0,039	0,2	0,013	0,1	0,005	0,1	0,002	0,1						
0,08	1,357	0,9	0,475	0,6	0,159	0,4	0,050	0,2	0,017	0,1	0,006	0,1	0,002	0,1						
0,09	1,673	1,0	0,585	0,7	0,196	0,4	0,061	0,3	0,021	0,2	0,007	0,1	0,002	0,1						
0,10	2,017	1,1	0,704	0,7	0,236	0,5	0,073	0,3	0,025	0,2	0,009	0,1	0,003	0,1	0,001	0,1				
0,12	2,791	1,4	0,973	0,9	0,325	0,6	0,101	0,3	0,034	0,2	0,012	0,1	0,004	0,1	0,002	0,1	0.004			
0,14	3,676	1,6	1,279	1,0	0,427	0,6	0,133	0,4	0,045	0,3	0,016	0,2	0,005	0,1	0,002	0,1	0,001	0,0		
0,16	4,669	1,8	1,622	1,2	0,540	0,7	0,168	0,5 0,5	0,057	0,3	0,020	0,2	0,006	0,1	0,003	0,1	0,001	0,1		
0,18 0,20	5,768 6,971	2,0	2,000 2,414	1,3 1,5	0,665 0,802	0,8	0,206	0,5	0,070 0,084	0,3	0,024	0,2	0,008		0,003	0,1	0,001	0,1		
0,20	14,522	3,4	4,994	2,2	1,650	1,4	0,249 0,510	0,8	0,084	0,4	0,029	0,2	0,010	0,1	0,004	0,1	0,002	0,1	0.001	0,1
0,30	14,522	3,4	8,397	2,2	2,761	1,4	0,849	1,1	0,172	0,5	0,099	0,5	0,019	0,2	0,008	0,2	0,004	0,1	0,001	0,1
0,40			0,397	2,9	4,125	2,3	1,264	1,1	0,280	0,7	0,099	0,5	0,032	0,3	0,014	0,2	0,000	0,1	0,002	0,1
0,60					5,735	2,8	1,752	1,7	0,587	1,1	0,203	0,7	0,046	0,4	0,029	0,3	0,009	0,2	0,005	0,1
0,70					7,585	3,2	2,311	2,0	0,337	1,3	0,267	0,8	0,087	0,5	0,038	0,4	0,012	0,2	0,006	0,2
0,80					7,000	0,2	2,939	2,3	0,981	1,4	0,338	0,9	0,110	0,6	0,048	0,4	0,020	0,3	0,008	0,2
0,90							3,635	2,5	1,211	1,6	0,417	1,0	0,135	0,6	0,059	0,5	0,025	0,3	0,010	0,2
1,00							4,399	2,8	1,463	1,8	0,503	1,2	0,163	0,7	0,071	0,5	0,030	0,4	0,011	0,2
1,20							6,127	3,4	2,031	2,2	0,696	1,4	0,225	0,9	0,097	0,6	0,041	0,4	0,016	0,3
1,40							,		2,683	2,5	0,917	1,6	0,296	1,0	0,128	0,7	0,054	0,5	0,021	0,3
1,60									3,417	2,9	1,165	1,8	0,375	1,2	0,162	0,8	0,068	0,6	0,026	0,4
1,80									4,233	3,2	1,441	2,1	0,463	1,3	0,200	0,9	0,083	0,6	0,032	0,4
2,00											1,742	2,3	0,559	1,4	0,241	1,0	0,101	0,7	0,039	0,5
2,20											2,070	2,5	0,663	1,6	0,286	1,1	0,119	0,8	0,046	0,5
2,40											2,423	2,8	0,775	1,7	0,334	1,2	0,139	0,8	0,054	0,6
2,60											2,803	3,0	0,894	1,9	0,385	1,3	0,160	0,9	0,062	0,6
2,80											3,208	3,2	1,022	2,0	0,440	1,4	0,183	1,0	0,070	0,7
3,00											3,638	3,5	1,158	2,2	0,498	1,5	0,207	1,1	0,080	0,7
3,20													1,301	2,3	0,559	1,6	0,232	1,1	0,089	0,8
3,40													1,452	2,5	0,623	1,7	0,259	1,2	0,099	0,8
3,60									_				1,610	2,6	0,691	1,8	0,286	1,3	0,110	0,9
3,80													1,776	2,7	0,761	1,9	0,316	1,3	0,121	0,9
4,00													1,949	2,9	0,835	2,0	0,346	1,4	0,133	1,0
4,20													2,131	3,0	0,912	2,1	0,377	1,5	0,145	1,0
4,40 4,60													2,319	3,2	0,992 1,075	2,2	0,410	1,6	0,157	1,0
4,60													2,515 2,718	3,3	1,075	2,3	0,444	1,6 1,7	0,170 0,184	1,1 1,1
5,00													۷,/۱۵	3,5	1,251	2,4	0,480	1,7	0,184	1,1
5,00															1,201	2,3	0,516	1,0	0,196	1,2

S 5 (PN	N 20) те	емпе	ратура	воді	ы = 50°	С														
κ = 0,01	16 x 2,7	ММ	20 x 3,4	мм	25 x 4,2	ММ	32 x 5,4	ММ	40 x 6,7	′ мм	50 x 8,3	Вмм	63 x 10,	5 мм	75 x 12,	5 мм	90 x 15,	0 мм	110 x 18	3,3 мм
Q	R	٧	R	v	R	v	R	v	R	v	R	v	R	v	R	v	R	v	R	v
л/с	кПа/м	м/с	кПа/м	м/с	кПа/м	м/с	кПа/м	м/с	кПа/м	м/с	кПа/м	м/с	кПа/м	м/с	кПа/м	м/с	кПа/м	м/с	кПа/м	м/с
0,01	0,028	0,1	0,010	0,1																
0,02	0,096	0,2	0,034	0,1	0,011	0,1	0,004	0,1												
0,03	0,196	0,3	0,069	0,2	0,023	0,1	0,007	0,1	0,002	0,1										
0,04	0,326	0,5	0,114	0,3	0,038	0,2	0,012	0,1	0,004	0,1										
0,05	0,485	0,6	0,169	0,4	0,057	0,2	0,018	0,1	0,006	0,1	0,002	0,1								
0,06	0,672	0,7	0,234	0,4	0,078	0,3	0,024	0,2	0,008	0,1	0,003	0,1								
0,07	0,886	0,8	0,308	0,5	0,102	0,3	0,032	0,2	0,011	0,1	0,004	0,1	0,001	0,1						

Таблицы потерь давления

S 5 (PN	I 20) тег	ипер	атура в	оды	= 50 °C	:														
κ = 0,01	16 x 2,7	мм	и 20 х 3,4 мм		25 х 4,2 мм		32 х 5,4 мм		40 х 6,7 мм		50 х 8,3 мм		63 х 10,5 мм		75 х 12,5 мм		90 х 15,0 мм		110 х 18,3 мм	
Q	R	v	R	v	R	٧	R	v	R	v	R	v	R	v	R	v	R	v	R	v
л/с	кПа/м	м/с	кПа/м	м/с	кПа/м	м/с	кПа/м	м/с	кПа/м	м/с	кПа/м	м/с	кПа/м	м/с	кПа/м	м/с	кПа/м	м/с	кПа/м	м/с
0,08	1,126	0,9	0,390	0,6	0,130	0,4	 0,040	0,2	0,014	 0,1	0,005	0,1	0,002	0,1	<u> </u> 	 	 	 	<u> </u> 	
0,09	1,392	1,0	0,482	0,7	0,160	0,4	0,050	0,3	0,017	0,2	0,006	0,1	0,002	0,1						
0,10	1,684	1,1	0,582	0,7	0,193	0,5	0,060	0,3	0,020	0,2	0,007	0,1	0,002	0,1	0,001	0,1				
0,12	2,344	1,4	0,807	0,9	0,267	0,6	0,082	0,3	0,028	0,2	0,010	0,1	0,003	0,1	0,001	0,1				
0,14	3,104	1,6	1,065	1,0	0,351	0,6	0,108	0,4	0,037	0,3	0,013	0,2	0,004	0,1	10,002	0,1	0,001	0,0		
0,16	3,962	1,8	1,356	1,2	0,446	0,7	0,137	0,5	0,046	0,3	0,016	0,2	0,005	0,1	0,002	0,1	0,001	0,1		
0,18	4,918	2,0	1,679	1,3	0,551	0,8	0,169	0,5	0,057	0,3	0,020	0,2	0,006	0,1	0,003	0,1	0,001	0,1		
0,20	5,972	2,3	2,033	1,5	0,666	0,9	0,204	0,6	0,069	0,4	0,024	0,2	0,008	0,1	0,003	0,1	0,001	0,1		
0,30	12,68	3,4	4,273	2,2	1,388	1,4	0,423	0,8	0,141	0,5	0,049	0,3	0,016	0,2	0,007	0,2	0,003	0,1	0,001	0,1
0,40			7,281	2,9	2,348	1,8	0,710	1,1	0,236	0,7	0,081	0,5	0,026	0,3	0,011	0,2	0,005	0,1	0,002	0,1
0,50					3,541	2,3	1,065	1,4	0,353	0,9	0,121	0,6	0,039	0,4	0,017	0,3	0,007	0,2	0,003	0,1
0,60					4,964	2,8	1,486	1,7	0,491	1,1	0,168	0,7	0,054	0,4	0,023	0,3	0,010	0,2	0,004	0,1
0,70					6,616	3,2	1,972	2,0	0,649	1,3	0,221	0,8	0,071	0,5	0,031	0,4	0,013	0,2	0,005	0,2
0,80							2,523	2,3	0,828	1,4	0,281	0,9	0,090	0,6	0,039	0,4	0,016	0,3	0,006	0,2
0,90							3,138	2,5	1,027	1,6	0,348	1,0	0,111	0,6	0,048	0,5	0,020	0,3	0,008	0,2
1,00							3,816	2,8	1,245	1,8	0,421	1,2	0,135	0,7	0,058	0,5	0,024	0,4	0,009	0,2
1,20							5,364	3,4	1,742	2,2	0,587	1,4	0,187	0,9	0,080	0,6	0,033	0,4	0,013	0,3
1,40									2,317	2,5	0,778	1,6	0,247	1,0	0,106	0,7	0,044	0,5	0,017	0,3
1,60									2,971	2,9	0,994	1,8	0,315	1,2	0,135	0,8	0,056	0,6	0,021	0,4
1,80									3,702	3,2	1,235	2,1	0,390	1,3	0,167	0,9	0,069	0,6	0,026	0,4
2,00											1,501	2,3	0,473	1,4	0,202	1,0	0,083	0,7	0,032	0,5
2,20											1,791	2,5	0,563	1,6	0,240	1,1	0,099	0,8	0,038	0,5
2,40											2,106	2,8	0,660	1,7	0,281	1,2	0,116	0,8	0,044	0,6
2,60											2,445	3,0	0,765	1,9	0,325	1,3	0,134	0,9	0,051	0,6
2,80											2,809	3,2	0,877	2,0	0,373	1,4	0,153	1,0	0,058	0,7
3,00											3,197	3,5	0,996	2,2	0,423	1,5	0,174	1,1	0,066	0,7
3,20													1,123	2,3	0,476	1,6	0,195	1,1	0,074	0,8
3,40													1,256	2,5	0,532	1,7	0,218	1,2	0,083	0,8
3,60													1,397	2,6	0,591	1,8	0,242	1,3	0,092	0,9
3,80													1,545	2,7	0,653	1,9	0,267	1,3	0,101	0,9
4,00													1,701	2,9	0,718	2,0	0,293	1,4	0,111	1,0
4,20													1,863	3,0	0,786	2,1	0,321	1,5	0,121	1,0
4,40													2,033	3,2	0,856	2,2	0,349	1,6	0,132	1,0
4,60													2,210	3,3	0,930	2,3	0,379	1,6	0,143	1,1
4,80													2,394	3,5	1,006	2,4	0,410	1,7	0,155	1,1
5,00															1,086	2,5	0,442	1,8	0,167	1,2

S 5 (PN	S 5 (PN 20) температура воды = 80 °C																			
κ = 0,01	16 x 2,7	мм	20 x 3,4	мм	25 x 4,2	ММ	32 x 5,4	мм	40 x 6,7	′ мм	50 x 8,3	Вмм	63 x 10,	5 мм	75 x 12,	5 мм	90 x 15,	0 мм	110 x 18	3,3 мм
Q	R	v	R	v	R	v	R	v	R	٧	R	v	R	V	R	v	R	v	R	v
л/с	кПа/м	м/с	кПа/м	м/с	кПа/м	м/с	кПа/м	м/с	кПа/м	м/с	кПа/м	м/с	кПа/м	м/с	кПа/м	м/с	кПа/м	м/с	кПа/м	м/с
0,01	0.026	0,1	0,009	1,1																
0,02	0,087	0,2	0,030	1,1	0,010	0,1	0,003	0,1												
0,03	0,179	0,3	0,062	0,2	0,021	0,1	0,006	0,1	0,002	0,1										
0,04	0,299	0,5	0,104	0,3	0,035	0,2	0,011	0,1	0,004	0,1										
0,05	0,446	0,6	0,155	0,4	0,051	0,2	0,016	0,1	0,005	0,1	0,002	0,1								
0,06	0,619	0,7	0,214	0,4	0,071	0,3	0,022	0,2	0,007	0,1	0,003	0,1								
0,07	0,818	0,8	0,282	0,5	0,094	0,3	0,029	0,2	0,010	0,1	0,003	0,1	0,001	0,1						
0,08	1,042	0,9	0,359	0,6	0,119	0,4	0,037	0,2	0,012	0,1	0,004	0,1	0,001	0,1						
0,09	1,291	1,0	0,443	0,7	0,146	0,4	0,045	0,3	0,015	0,2	0,005	0,1	0,002	0,1						
0,10	1,565	1,1	0,536	0,7	0,177	0,5	0,054	0,3	0,018	0,2	0,006	0,1	0,002	0,1	0,001	0,1				
0,12	2,186	1,4	0,746	0,9	0,245	0,6	0,075	0,3	0,025	0,2	0,009	0,1	0,003	0,1	0,001	0,1				
0,14	2,905	1,6	0,988	1,0	0,323	0,6	0,099	0,4	0,033	0,3	0,012	0,2	0,004	0,1	0,002	0,1	0,001	0,0		
0,16	3,719	1,8	1,261	1,2	0,412	0,7	0,126	0,5	0,042	0,3	0,015	0,2	0,005	0,1	0,002	0,1	0,001	0,1		
0,18	4,630	2,0	1,565	1,3	0,510	0,8	0,155	0,5	0,052	0,3	0,018	0,2	0,006	0,1	0,003	0,1	0,001	0,1		

S 5 (PN	S 5 (PN 20) температура воды = 80 °C																			
κ = 0,01	16 x 2,7	16 х 2,7 мм 20 х 3,4 мм		мм	25 х 4,2 мм		32 х 5,4 мм		40 х 6,7 мм		50 х 8,3 мм		63 х 10,5 мм		75 х 12,5 мм		90 х 15,0 мм		110 x 18	3,3 мм
Q	R	v	R	v	R	٧	R	v	R	v	R	v	R	٧	R	v	R	v	R	v
л/с	кПа/м	м/с	кПа/м	м/с	кПа/м	м/с	кПа/м	м/с	кПа/м	м/с	кПа/м	м/с	кПа/м	м/с	кПа/м	м/с	кПа/м	м/с	кПа/м	м/с
0,18	4,630	2,0	1,565	1,3	0,510	0,8	0,155	0,5	0,052	0,3	0,018	0,2	0,006	0,1	0,003	0,1	0,001	0,1		
0,20	5,636	2,3	1,900	1,5	0,617	0,9	0,188	0,6	0,063	0,4	0,022	0,2	0,007	0,1	0,003	0,1	0,001	0,1		
0,30	12,09	3,4	4,031	2,2	1,296	1,4	0,391	0,8	0,130	0,5	0,045	0,3	0,014	0,2	0,006	0,2	0,003	0,1	0,001	0,1
0,40			6,918	2,9	2,206	1,8	0,661	1,1	0,218	0,7	0,075	0,5	0,024	0,3	0,010	0,2	0,004	0,1	0,002	0,1
0,50					3,346	2,3	0,995	1,4	0,327	0,9	0,111	0,6	0,036	0,4	0,015	0,3	0,006	0,2	0,002	0,1
0,60					4,712	2,8	1,395	1,7	0,456	1,1	0,155	0,7	0,050	0,4	0,021	0,3	0,009	0,2	0,003	0,1
0,70					6,304	3,2	1,858	2,0	0,605	1,3	0,205	0,8	0,065	0,5	0,028	0,4	0,012	0,2	0,005	0,2
0,80							2,384	2,3	0,774	1,4	0,261	0,9	0,083	0,6	0,036	0,4	0,015	0,3	0,006	0,2
0,90							2,974	2,5	0,963	1,6	0,324	1,0	0,103	0,6	0,044	0,5	0,018	0,3	0,007	0,2
1,00							3,626	2,8	1,171	1,8	0,392	1,2	0,124	0,7	0,053	0,5	0,022	0,4	0,009	0,2
1,20							5,121	3,4	1,645	2,2	0,549	1,4	0,173	0,9	0,074	0,6	0,031	0,4	0,012	0,3
1,40									2,197	2,5	0,730	1,6	0,230	1,0	0,098	0,7	0,040	0,5	0,016	0,3
1,60									2,826	2,9	0,936	1,8	0,293	1,2	0,125	0,8	0,051	0,6	0,020	0,4
1,80									3,532	3,2	1,166	2,1	0,364	1,3	0,155	0,9	0,064	0,6	0,024	0,4
2,00											1,421	2,3	0,443	1,4	0,188	1,0	0,077	0,7	0,029	0,5
2,20											1,700	2,5	0,528	1,6	0,224	1,1	0,092	0,8	0,035	0,5
2,40											2,003	2,8	0,621	1,7	0,263	1,2	0,107	0,8	0,041	0,6
2,60											2,331	3,0	0,721	1,9	0,304	1,3	0,124	0,9	0,047	0,6
2,80											2,682	3,2	0.828	2,0	0,349	1,4	0,142	1,0	0.054	0,7
3,00											3,058	3.5	0.942	2,2	0,397	1,5	0,162	1,1	0,061	0.7
3,20											,	,	1,064	2,3	0,447	1,6	0,182	1,1	0.069	0.8
3,40													1,192	2,5	0,501	1,7	0,204	1,2	0,077	0.8
3,60													1,328	2,6	0,557	1,8	0.226	1,3	0.085	0,9
3,80													1,471	2,7	0,616	1,9	0.250	1,3	0.094	0,9
4,00													1,621	2,9	0,679	2,0	0,275	1,4	0,103	1.0
4,20													1,778	3,0	0,744	2,1	0,301	1,5	0,113	1,0
4,40													1,942	3,2	0,812	2,2	0.328	1,6	0,123	1,0
4,60													2,113	3,3	0,882	2,3	0,356	1,6	0,134	1,1
4,80													2,292	3.5	0,956	2,4	0,386	1,7	0,145	1,1
5,00													_,	5,5	1,033	2,5	0,416	1,8	0,156	1,2

XVIII. Значения коеффициента местных сопротивлений ζ для фасонных частей системы Ekoplastik PPR

ФАС	ФАСОННАЯ ЧАСТЬ									
	T	Тройник отвод	1,5							
	T	Тройник переходной	1,1							
	T	Тройник металл-пластм. отвод	4,3							
	→	Переход металл-пластм.	0,4							
	-	Переход s металл-пластм. с накидной гайкой	8,3							

XIX. Заключительное положение

Эта инструкция по монтажу была разработана 1. 4. 2009

Трубы и фитинги для систем водоснабжения и отопления.

Система Ekoplastik PPR

- каталог изделий
- инструкция по монтажу

Система Ekoplastik Therm

- каталог изделий
- инструкция по применению

Система Ekoplastik PPR предназначена для подачи питьевой и горячей воды, для систем местного и центрального отопления, для систем напольного и потолочного отопления и для подачи воздуха.

WAVIN Ekoplastik s.r.o. Rudeč 848 277 13 Kostelec n/Labem Czech Republic Tel.: +420/ 326 983 111

Tel.: +420/ 326 983 111 Fax: +420/ 326 983 110 ekoplastik@ekoplastik.cz www.ekoplastik.com